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Reconstructing and explaining species' evolutionary history is
one of the central goals of biology. Ancestral state reconstruction
(ASR) is a popular approach that combines phylogenies and
models of trait evolution to infer how species' traits have changed
over evolutionary time. ASR is potentially very useful, because it
allows us to study the evolutionary history of traits that leave
little or no trace in the fossil record. For example, recent studies
have used ASR to understand the evolution of reproductive mode
in reptiles (Pyron and Burbrink, 2013), genome size in flowering
plants (Beaulieu et al., 2010), salt tolerance, and photosynthetic
pathways in grasses (Edwards and Smith, 2010; Bennett et al.,
2013; Bromham and Bennett, 2014), placentas inmammals (Elliot
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ABSTRACT Ancestral state reconstruction (ASR) is a popular method for exploring the evolutionary history of
traits that leave little or no trace in the fossil record. For example, it has been used to test
hypotheses about the number of evolutionary origins of key life-history traits such as oviparity, or
key morphological structures such as wings. Many studies that use ASR have suggested that the
number of evolutionary origins of such traits is higher than was previously thought. The scope of
such inferences is increasing rapidly, facilitated by the construction of very large phylogenies and
life-history databases. In this paper, we use simulations to show that the number of evolutionary
origins of a trait tends to be overestimated when the phylogeny is not perfect. In some cases, the
estimated number of transitions can be several fold higher than the true value. Furthermore, we
show that the bias is not always corrected by standard approaches to account for phylogenetic
uncertainty, such as repeating the analysis on a large collection of possible trees. These findings
have important implications for studies that seek to estimate the number of origins of a trait,
particularly those that use large phylogenies that are associated with considerable uncertainty. We
discuss the implications of this bias, and methods to ameliorate it. J. Exp. Zool. (Mol. Dev. Evol.)
9999B: 1–8, 2015. © 2015 Wiley Periodicals, Inc.
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and Crespi, 2009), and vocal communication in birds (Odom et al.,
2014).
ASR relies on three key elements: accurate trait data, amodel of

trait evolution, and an estimate of the phylogenetic relationships
of the clade of interest. The importance of accurate trait data is
widely appreciated and often forms the majority of the work that
goes into an ASR study. The model of trait evolution is also vital
to the accuracy of the inferences that aremade, and is the focus of
a huge amount of ongoingwork and debate (FitzJohn et al., 2009;
Beaulieu et al., 2013; Revell, 2014). In contrast, the accuracy of
the phylogenies used in ASR has received less attention
(Diaz-Uriarte and Garland, '98; Huelsenbeck and Bollback,
2001). All ASR methods rely on an estimate of the phylogeny,
but how good does this estimate have to be? Can uncertainty or
inaccuracy in the tree topology itself bias ASR analyses?
A focus on phylogenetic uncertainty is timely because there

has been a dramatic increase in the number of ASR projects based
on extremely large phylogenies, often covering many or most of
the species in a clade. For example, recent years have seen the
publication of many large phylogenies that have been used for
ASR studies, including trees of: 9,993 birds (Jetz et al., 2012);
32,223 angiosperms (Zanne et al., 2014); 1,230 grasses (Edwards
and Smith, 2010); 2,871 amphibians (Pyron andWiens, 2011); and
7,822fish (Rabosky et al., 2013). ASR studies that use phylogenies
of this size make inferences of broad scope that can have
far-reaching implications, so it is important that we understand
the limits that phylogenetic accuracy can place on inferences
made from ASR studies.
In this study, we focus on an approach in which the phylogeny

is estimated independently of the ASR analysis itself. It is
possible, and arguably preferable, to perform a joint inference of
the phylogeny and the ancestral traits, such that the plausibility
of particular ancestral state reconstructions can inform the
estimate of the phylogeny (Huelsenbeck and Bollback, 2001;
Lemey et al., 2009). However, the joint inference approach
remains relatively uncommon, perhaps because it is not
computationally feasible for very large datasets. Instead, most
ASR studies either use a published phylogeny, or estimate a
phylogeny from molecular data before proceeding with recon-
structing the evolutionary history of the trait(s) of interest on that
phylogeny.
All estimates of phylogenies are uncertain, but how could

this uncertainty affect inferences made from ASR? We first
provide a somewhat contrived example, and then assess this
question more generally by using simulations. For simplicity,
we focus throughout on attempts to estimate the number of
transitions between two states of a single trait. However, we
note that the reasoning we develop is likely to apply to many
other uses of ASR.
To exemplify the problem, imagine you are interested in

estimating the number of transitions between two states of a
single trait, such as viviparous and oviparous reproduction, over

the history of a clade. Imagine also that the rate of transition is
relatively low, as is often the case for ASR studies, since fast
evolving traits leave little phylogenetic signal and are less
amenable to study. If you knew the true phylogeny, the truemodel
of evolution, and data on the trait of interest in all extant taxa,
you would have a good chance of inferring the correct number
of transitions. For example, on the phylogeny shown in
Figure 1A all reasonable methods would infer a single change
in the trait. But what happens if you don't know the true
phylogeny? In the face of phylogenetic uncertainty, you will tend
to infer more transitions than actually occurred, simply because
there aremoreways to intermingle taxawith different trait values
than there are ways to keep them separate (Fig. 1B). Thus, in
Figure 1B a relatively minor change in the phylogeny leads to the
reconstruction of three transitions rather than one. The problem is
that among the vast number of possible trees, very few trees give
the correct number of transitions, and the vast majority give too
many transitions. That is, phylogenetic inaccuracy tends to lead
to an overestimation of the true number of transitions that have
occurred on a tree.

Figure 1. Illustration of bias in estimating the number of
transitions during ancestral state reconstruction. (A) When the
true tree is known, most reconstruction methods would suggest a
single transition. (B) When the phylogeny is incorrect, most trees
tend to lead to an overestimate of the number of transitions. In
this example, a small error in reconstruction in which two species
are interchanged leads to the reconstruction of three transitions
instead of one.
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To demonstrate this, we can calculate the scale of the problem
for a simple case study. Imagine that we are interested in
reconstructing the number of transitions between two states in a
clade of N species. We start with a true tree of N species that is
balanced and rooted, and that is constructed such that all of the
species in the left-hand clade (clade 1) share one value of the trait,
and all of the species in the right-hand clade (clade 2) share the
other value of the trait. Figure 1A provides an example for 8
species. In this case, we only need to infer a single transition to
explain the data, althoughwewould not knowwithout additional
information the state of the trait at the root of the tree. We can
now ask what proportion of all possible trees will overestimate
the true number of transitions.
Calculating the proportion of trees that will overestimate the

number of transitions is relatively simple. For the case presented
here, we will correctly infer a single transition as long as all of the
species in either clade 1 and/or clade 2 remain monophyletic. All
other possible trees will infer more than one transition. The
proportion of trees that overestimate the number of transitions is
simply the number of trees that overestimate the number of
transitions, divided by the number of possible trees forN taxa (see
Appendix for derivation):

ð2N � 3Þ!!� ðN � 3Þ!! ðN � 3Þ!!þ ð2N � 4Þ½ �
ð2N � 3Þ!!

For the case study here of a single true transition, this shows
that in all but trivially small trees, the vast majority of trees will
overestimate the true number of transitions. For example, in a
study of just 6 taxa, more than 96% of all possible trees will
overestimate the number of transitions. This increases rapidly
with the number of taxa, such that the proportion is >99.9% for
10 taxa, and >99.999% for 15 taxa. This simple example,
although contrived, implies that as long as our estimate of the
true phylogeny is uncertain we will often overestimate the
number of transitions between states for slowly evolving traits.
But wouldn't such a bias be accounted for by standard methods

of accounting for phylogenetic uncertainty? Researchers typi-
cally take one of two approaches to phylogenetic uncertainty:
they either ignore it or they attempt to account for it by repeating
the inference across a large collection of trees. Many of the most
recent studies ignore phylogenetic uncertainty, and infer the
number of transitions on a single estimate of the “best” tree. This
is lamentable, because all phylogenetic estimates are uncertain,
and ignoring uncertainty in the tree topology and branch lengths
can only lead to overconfidence in other parameter estimates
(Huelsenbeck and Bollback, 2001). In these cases, we expect the
number of transitions to be overestimated. ASR studies that do
account for phylogenetic uncertainty tend to do so by repeating
the ASR on a large collection of trees (e.g., 100 bootstrap trees, or
100 trees from the posterior distribution of trees from a Bayesian
analysis), to infer a distribution of the parameters of interest.
However, although this approach is common, it may not be

sufficient to account for the bias we describe: if the overwhelming
majority of trees overestimate the number of transitions, then
the distribution of the number of transitions calculated from a
large collection of trees will also be biased. Indeed, because the
proportion of trees that overestimate the number of transitions is
so high, it is feasible that even very large samples of trees may all
overestimate the true number of transitions.
We use simulations to investigate this problem, by comparing

estimates of the number of transitions from ancestral state
reconstructions on the true tree to estimates derived from trees
reconstructed from simulated DNA sequence data. We show that
the effect we describe above can lead to large biases in the
estimated number of transitions, and that this problem is often
not accounted for by conducting the analyses over a large
collection of trees. We suggest that this bias should be considered
when interpreting the results of such analyses, and that it is also
likely to occur in applications of ASR that we have not studied
here, such as the estimation of rates of transition, or of rates of
evolution of continuous parameters such as body size.

MATERIALS AND METHODS
We used a simulation framework to investigate the impact of
phylogenetic uncertainty, tree size, and transition rate on the
estimation of the number of transitions between two states of a
binary trait. In each simulation, we generated 10 replicate
datasets, where each replicate involved simulating a phylogeny,
simulating a DNA sequence alignment, and simulating binary
character data on the true phylogeny. In total we examined 54
simulation conditions, comprising three tree sizes (50, 100, and
500 taxa), six possible alignment lengths (0, 10, 20, 50, 100, and
1000 nucleotides), and three possible transition rates (corre-
sponding to 3, 10, and 30 expected transitions). Thus, in total we
simulated 540 datasets. Below, we describe these simulations in
more detail, and we then describe how we used the simulations to
test for bias in estimating the number of evolutionary origins of a
trait.

Simulation of Phylogenetic Trees
We simulated phylogenetic trees of 50, 100, and 500 taxa with a
root-node age of 1 Myr under the Yule speciation process, as
implemented in TreeSim v1.9.1 (Stadler, 2011). This implemen-
tation of the Yule process produces ultrametric trees with
branch lengths in units of time, known as chronograms. We
simulated the substitution rate along these chronograms using
the lognormal relaxed-clock model (Drummond et al., 2006),
implemented in NELSI v0.21 (Ho et al., 2015). We parameterized
the clock model using a mean of 0.1 substitutions per site per
year (subs/site/year) and a standard deviation of 10% of the
mean. We divided the branch lengths of the chronograms by
the branch-specific rates to obtain phylograms, in which the
branch lengths correspond to the expected number of
substitutions per site (subs/site).
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Simulation of Nucleotide Alignments
We simulated nucleotide evolution along the phylograms under
the Jukes-Cantor (JC) substitution model (Jukes and Cantor,
1969) to obtain sequence alignments of 0, 10, 20, 50, 100, and
1000 nucleotides. We chose the JC model to avoid the need to
select arbitrary parameterizations of more complex models, and
because our study does not involve an investigation of
substitution model misspecification. We chose the range of
alignment lengths after some preliminary analyses, which
indicated that this collection of alignment lengths resulted in
reconstructed trees with the full range of uncertainty for most
datasets. Trees reconstructed with alignments lengths of 0
nucleotides have very low support and high uncertainty, whereas
trees estimated from alignments of 1000 nucleotides tend to have
much lower uncertainty and higher support.

Simulation of Trait Data
We simulated stochastic evolution of a two-state character with
states A and B along the simulated chronograms, using the sim.
history function from Phytools v0.4 (Revell, 2012). This method
requires a transition rate matrix, known as Q. We parameterized
Q to produce three different expected numbers of transitions
along each of the 180 simulated trees: 3, 10, and 30, which we
designate as low, medium, and high, respectively, throughout this
study. To calculate the transition probabilities we divided the
expected number of transitions by the total tree length. Our
parameterization of Q consisted in symmetric transition rates,
such that the probability of observing a transition from A to B is
the same as the reverse. We set the root-node state to A in all of
our simulations. The output from these simulations is the
character state for each taxon in the tree.

Testing for Bias in Estimates of the Number of Transitions
To test for bias in ancestral state reconstructions, we compared
the number of transitions estimated on the true tree (i.e., the tree
under which the character data were simulated) with the number
estimated on trees reconstructed from the simulated sequence
data. This approach ensures that the only difference between the
two approaches is in the underlying phylogeny used in the ASR,
that is whether we use the true tree or an estimate of it. This is
important, since even when the true tree and the true model are
used, one cannot be guaranteed to recover the true number of
transitions, especially if the number of transitions is very large in
proportion to the number of taxa in tree. Thus, our comparison
automatically accounts for any error or bias inherent in
the reconstruction itself, and allows us to focus exclusively on
the impact of phylogenetic uncertainty on the estimates of the
number of transitions.
We estimated phylogenetic trees from our simulated align-

ments using a Bayesian Markov chain Monte Carlo (MCMC)
sampling method implemented in BEAST v2.1 (Bouckaert et al.,
2014). We matched the models in BEAST to those used in our

simulations by using the Yule tree prior, the JC substitution
model, and the lognormal relaxed-clock model. We calibrated
the molecular clock by specifying the age of the root-node in the
form of a uniform prior distribution with minimum and
maximum bounds of 0.9 and 1.1, respectively. We sampled
from the posterior distribution every 103 steps from an MCMC
length of 107 steps.We discarded thefirst 10% steps as burn-in. To
assess sufficient sampling from the stationary distribution we
verified that the effective sample size for all parameters was at
least 200, using CODA v0.16 (Plummer et al., 2006). If the
effective sample size for any parameter was less than 200, we
increased the chain length by 20% and repeated the analysis.
To estimate the number of transitions along the trees we used

stochastic character mapping, SIMMAP (Huelsenbeck et al.,
2003), as implemented in Phytools. In this method, the condi-
tional likelihood for each state is calculated at every node, and
then simulations are conducted by sampling from the posterior
distribution of the character states (Huelsenbeck et al., 2003;
Bollback, 2006). For each of our analyses we sampled 200 trees
from the posterior distribution, which we refer to as “recon-
structed trees.” We conducted 100 simulations for the SIMMAP
method to estimate the number of transitions for each of the
reconstructed trees. We specified symmetric transition rates to
match the model used to generate the data, and we calculated the
mean estimated number of transitions across the 100 simulations
of the SIMMAP method for each tree. However, because our
analyses included 200 trees from the posterior, we considered the
uncertainty in the estimates as the range of mean values obtained
for these trees. For comparison, we also used this method to
estimate the number of transitions along the true tree.
We quantified errors in the estimated number of transitions by

comparing the estimates obtained with the true tree, with those
from the reconstructed trees. We calculated the ratio of the
number of transitions estimated on the reconstructed trees to the
number of transitions estimated on the true tree. This ratio
describes the over- or underestimation of the number of
transitions as a result of using reconstructed trees. For example,
a ratio of 3 indicates that a reconstructed tree had three times as
many transitions as the true tree. A ratio of 0.5 indicates that the
reconstructed tree had half as many transitions as the true tree.
Thus, if the distribution of the number of transitions calculated
from the reconstructed trees overlaps with 1, that distribution
includes the value estimated on the true tree.
To investigate the relationship between node support and the

estimated number of transitions, we obtained the highest clade
credibility (HCC) tree for each simulated data set and calculated
the mean posterior probability for all nodes. Note that we do not
use the HCC tree to estimate the number of transitions, however,
the mean posterior support of this tree serves as a measure of
phylogenetic uncertainty in the reconstructed trees. For instance,
if the HCC tree for a simulated data set has a mean posterior
probability of 0.02, the number of different tree topologies in the
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posterior is expected to be very large, such that there is high
phylogenetic uncertainty. On the contrary, if the posterior
probability of the HCC tree is 0.99, then the number of tree
topologies in the posterior should be very small, with low
phylogenetic uncertainty. The computer code to reproduce our
simulations and analyses is freely available in an online
repository (http://bit.ly/18JDdkh).

RESULTS AND DISCUSSION
In this study, we used simulations to ask whether estimates of the
number of transitions can be biased by phylogenetic uncertainty.
Our results show that phylogenetic uncertainty can lead to severe
biases in ancestral state reconstruction, and that conducting the
analysis on a large collection of trees is usually insufficient to
account for this bias (Fig. 2). In the vast majority of cases
the number of transitions was over-estimated, regardless of the
simulation conditions. Notably, this bias also applies when the
level of phylogenetic uncertainty was within levels commonly
considered as acceptable (e.g., mean posterior node support
>90%). These results have important implications for the
interpretation of the results of studies that seek to reconstruct
the number of evolutionary transitions between traits: as long as

the phylogenetic tree is not knownwith certainty, reconstructions
tend to overestimate the number of transitions that have
occurred.
As expected, the bias in the estimated number of transitions was

highest when the expected number of transitions was lowest
(Fig. 2). For example, in our simulations with three expected
transitions (Fig. 2, top row), the number of transitions on
reconstructed trees was frequently more than three-fold higher
than the number estimated on the true tree. But with thirty
expected transitions (Fig. 2, bottom row), the biaswas rarely higher
than three-fold. This reduction in bias occurs because smaller
numbers of expected transitions result in a larger proportion of
trees that overestimate the number of transitions, and because
there is an upper limit to the number of transitions that can
be reconstructed on a tree of a given size. When considering the
impacts of this bias on empirical studies, it is important to note that
it is not the absolute number of transitions that is important, but
the overall rate of transition. For example, our simulations of 10
transitions on a tree of 50 taxa represent roughly 1 transitions
occurring on every 10 branches. Our results show that in this case
even highly supported trees (mean posterior support >0.9) can
estimate almost twice the true number of transitions.

Figure 2. Error in the estimated number of transitions vs. the mean posterior probability (node support) for simulations with different
numbers of transitions and number of taxa. The y-axis is the error measured as the estimated number of transitions on the reconstructed tree
divided by the estimated number of transitions on the true tree, such that values higher than one correspond to overestimates. Each bar
corresponds to a single simulated data set, and represents the range of estimates for the 200 trees taken from the MCMC, that is it
represents an estimate of the range of the posterior distribution of the number of transitions for a given simulation. The horizontal line
corresponds to an error value of 1; bars that overlap this value represent simulations in which the number of transitions estimated on the
true tree is included in the range of the number of transitions estimated from the posterior distribution of reconstructed trees.
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The links between phylogenetic uncertainty and bias in the
estimated number of transitions depended on the number of taxa
in the simulated tree. For trees of 50 and 100 taxa, higher node
support was generally associated with smaller bias (Fig. 2
columns A and B). But for trees of 500 taxa this trend was less
marked, perhaps because even our largest simulated alignments
of 1000 sites did not provide sufficient information to resolve the
500 taxon trees to more than an average of 0.4 mean posterior
node support (Fig. 2 column 3). Nevertheless, even highly
supported trees, i.e., when average posterior node support was
>90%, often estimated twice the true number of transitions
(Fig. 2, columns 1 and 2). This occurs because small portions of
the trees have low node support, such that the number of
transitions will tend to be overestimated if they occur in these
sections of the tree (some examples are provided in Supple-
mentary Fig. S1).
Accounting for uncertainty in the phylogeny by repeating the

analysis on 200 trees from the posterior distribution was often
insufficient to address the bias. In most of our simulations, the
distribution of the number of transitions from the reconstructed
trees did not overlap with the number of transitions reconstructed
on the true tree (shown on Fig. 2 by the large number of cases in
which the distributions do not overlap with the line at a value of 1
on the y-axis). This shows that there were frequently cases in
which none of the trees in the posterior sample were sufficiently
accurate to reconstruct the true number of transitions. Surpris-
ingly, this was also the case for some of our simulations in which
the mean posterior node support was greater than 90%. Perhaps
most importantly, our results suggest that studies which do not
attempt to account for phylogenetic uncertainty are liable to
overestimate the number of transitions by a large factor. For
example, we frequently observed cases in which some trees from
the posterior distribution overestimated the true number of
transitions by fourfold, even when the mean posterior node
support was quite high (Fig. 2).

Implications for Empirical ASR Studies
This study presents the results from a limited set of simulations.
By design, these simulations cover a large range of phyloge-
netic uncertainty, most of which would be deemed far too
high to be acceptable in empirical ASR studies. Nevertheless,
the simulations give a coherent picture that phylogenetic
uncertainty of any extent tends to bias estimates of the number
of evolutionary transitions between states, even when all other
details of the analysis (e.g., the model of trait evolution) are
correct. In particular, our results suggest that estimates of the
number of transitions from empirical studies are likely to be
biased upwards, and that this bias could be particularly severe
in studies that rely on a single estimate of the phylogeny. Our
results also show that this overestimation cannot always be
addressed by simply repeating the ASR on a large collection of
trees.

The extent to which empirical studies will overestimate the
number of transitions between states will depend on both the
accuracy of the phylogeny that is used, and the methods
employed to account for uncertainty. Studies which use very
well-resolved trees, are unlikely to dramatically overestimate the
number of transitions due to the bias we describe, regardless
whether or how they attempt to account for uncertainty in the
tree topology and branch lengths. However, our results show that
even quite well supported trees, withmean posterior node support
higher than 90%, can still overestimate of the number of
transitions by a factor of two. Empirical studies that rely on large
phylogenies of thousands of taxamay be particularly prone to the
bias we describe. This is because such studies typically rely on
phylogenies estimated from relatively small and sometimes
sparse alignments, which can be associated with considerable
uncertainty. Furthermore, such studies typically use approaches
that rely on a single estimate of the phylogeny, without
accounting for the uncertainty in topology or branch lengths.
For example, another paper in this issue (Wright, Brandley, and
Hillis this issue) has estimated that the tree used to investigate the
evolution of reproductive mode in reptiles (Pyron and Burbrink,
2013) has a mean bootstrap support of 86%, and that there are
more than 1000 nodes in the tree with less than 50% bootstrap
support. This degree of uncertainty could, in principle, lead to
large overestimates of the number of evolutionary transitions
between different modes of reproduction.
We re-iterate calls for ASR studies to account for uncertainty in

tree topologies and branch lengths when making inferences
about the evolutionary history of traits (Huelsenbeck and
Bollback, 2001). If possible, it is preferable to use a joint-
inference approach, such as the hierarchical Bayesian method
(Huelsenbeck and Bollback, 2001) which allows uncertainty in
the tree topology and branch lengths to be integrated out of
inferences about ancestral states. Where this is not feasible,
inferences should at the least be repeated on a large collection of
trees that represent the uncertainty in the topology and branch
lengths, to ensure as far as possible that point-estimates based on
single tree are not misleading.
Our results highlight the more general issue that it can be

difficult to make strong inferences from ASR studies without
additional biological information. Models of trait evolution are
necessarily oversimplified, and minor differences between
models can lead to relatively major differences in conclusions.
The bias we describe merely exacerbates these issues. While
additional data and more sophisticated models of evolution
might help to solve these problems, there is always likely to be
plenty of room for debate. What is perhaps more useful are
detailed discussions of the underlying biology of the trait(s) of
interest. On that note, the detailed case studies of putative
transitions from viviparity to oviparity presented by Pyron and
Burbrink (2014) and Pyron et al. (this issue) are a welcome
addition to the debate.
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APPENDIX
To set up the problem, imagine that we are interested in
reconstructing the number of transitions between two states in a
clade of N species. We start with a true tree of N species that is
balanced and rooted, and that is constructed such that all of the
species in the left-hand clade (clade 1) share one value of the trait,
and all of the species in the right-hand clade (clade 2) share the
other value of the trait. Figure 1A provides an example for 8
species.
We start by calculating the number of trees that will return

the correct number of transitions, i.e. one. To estimate one
transition, we require only that clade 1 and/or clade 2 is
monophyletic. We start by counting the number of trees for
which both clades are monophyletic. In this case, the number
of possible trees is the square of the number of possible ways of
rearranging a tree of N/2 species, since each arrangement of
the N/2 species in clade 1 can be paired with any possible
arrangement of the species in clade 2. The number of possible
trees for a clade of N/2 species is taken from Felsenstein
(Felsenstein, 2004), giving:

½ðN � 3Þ!!�2 ð1Þ

We now count the number of trees for which just one clade
is monophyletic, but the other paraphyletic, e.g. if clade 1 is
monophyletic but the root of the tree appears in clade 2. In this
case, we must account for all possible ways that the root of the
tree could be placed within the paraphyletic clade. Since the two
clades are both of size N/2 in this example, there are N-2 internal
branches in each clade, so N-2 possible ways to root the tree in
each clade. For each of these possible rootings of the paraphyletic
clade, wemust account for all possible ways to arrange the taxa in
the monophyletic clade (of which there are (N-3)!!), and finally
we account for the fact that either clade could be paraphyletic,
giving:

2ðN � 2ÞðN � 3Þ!! ð2Þ
Thus, the total number of trees which will estimate the correct

number of transitions is the sum of equations (1) and (2), which
simplifies to:

ðN � 3Þ!! ðN � 3Þ!!þ ð2N � 4Þ½ � ð3Þ
All other trees will overestimate the number of transitions,

because they will intermingle the species from clade 1 and clade 2
(e.g. Fig. 1B). Thus, the proportion of all possible trees that would
overestimate the true number of transitions is the difference

between equation 3 and the number of all possible rooted trees for
N taxa, divided by the latter:

ð2N � 3Þ!!� ðN � 3Þ!! ðN � 3Þ!!þ ð2N � 4Þ½ �
ð2N � 3Þ!! ð4Þ
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