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Phylogenetic estimates of evolutionary timescales can be obtained from nucleotide sequence data using
the molecular clock. These estimates are important for our understanding of evolutionary processes
across all taxonomic levels. The molecular clock needs to be calibrated with an independent source of
information, such as fossil evidence, to allow absolute ages to be inferred. Calibration typically involves
fixing or constraining the age of at least one node in the phylogeny, enabling the ages of the remaining
nodes to be estimated. We conducted an extensive simulation study to investigate the effects of the
position and number of calibrations on the resulting estimate of the timescale. Our analyses focused
on Bayesian estimates obtained using relaxed molecular clocks. Our findings suggest that an effective
strategy is to include multiple calibrations and to prefer those that are close to the root of the phylogeny.
Under these conditions, we found that evolutionary timescales could be estimated accurately even when
the relaxed-clock model was misspecified and when the sequence data were relatively uninformative.
We tested these findings in a case study of simian foamy virus, where we found that shallow calibrations
caused the overall timescale to be underestimated by up to three orders of magnitude. Finally, we provide
some recommendations for improving the practice of molecular-clock calibration.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Our understanding of the tempo and mode of evolution has
been transformed by the study of molecular data. One of the most
illuminating fields of research has been the use of molecular clocks
to estimate evolutionary rates and timescales. There has been
much progress in this area, with sophisticated methods being able
to handle large, multilocus data sets and to model various patterns
of rate variation among lineages (dos Reis and Yang, 2011;
Drummond et al., 2006; Rannala and Yang, 2007). However, all
molecular clocks need to be calibrated so that estimates of rates
and timescales are given in units of absolute time. Accordingly,
identifying and dealing with sources of error in calibrations is a
crucial component of molecular-clock analyses (Ho and Phillips,
2009; Inoue et al., 2010; Parham et al., 2012).

The most common method for calibrating molecular clocks is to
use independent information to constrain the age of one or more
nodes in the phylogenetic tree. We refer to these as the ‘calibrating
nodes’ throughout this article. Calibrations are often based on a
biogeographic event or on fossil evidence that can provide an esti-
mate of when two lineages last shared a common ancestor. In the
tree in Fig. 1, for example, a paleontological estimate of the diver-
gence time of species 1 and 2 can be used to calibrate node A. By
analysing the DNA sequences of these two species, we can estimate
the absolute rate of molecular evolution along the two lineages
descending from node A. The ages of other nodes in the tree can
then be inferred by assuming some relationship among the substi-
tution rates along different branches. A common strategy is to use
several calibrating nodes, but this is only possible in taxonomic
groups with a sufficient paleontological or biogeographic record.
Although calibrations are often specified as point values, it is more
appropriate to take into account their associated uncertainty (Ho
and Phillips, 2009).

In all molecular-clock analyses, the strongest assumption about
the substitution rate is that it is homogeneous across the tree,
which is known as a ‘strict’ molecular clock (Zuckerkandl and
Pauling, 1962). However, many empirical data sets fail to meet this
assumption, with important consequences for estimates of
divergence times (Yoder and Yang, 2000). As a response, various
methods that can account for rate variation among lineages have
been implemented (see reviews by Rutschmann, 2006; Welch
and Bromham, 2005). These can be broadly classified as either
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Fig. 1. Illustration of calibrating nodes in a phylogenetic tree. The shallowest node
is A, whereas node B is the root. Note that only two lineages descend from node A,
whereas deeper nodes are ancestral to a greater proportion of the tree.
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uncorrelated or autocorrelated relaxed-clock models. In uncorre-
lated models, the rate along each branch of the phylogeny is an
independent sample from a chosen probability distribution
(Drummond et al., 2006; Rannala and Yang, 2007). The autocorre-
lated models assume that rates vary gradually throughout the phy-
logeny, so that the rates along neighbouring branches have some
degree of correlation (Kishino et al., 2001; Sanderson, 2002,
1997; Thorne et al., 1998). The inclusion of calibrations can have
an important impact on clock-model selection. In particular, infor-
mative calibration(s) can allow the pattern of rate variation among
lineages to be resolved more reliably (Brandley et al., 2011;
Lukoschek et al., 2012).

Molecular-clock estimates can be sensitive to the positions of
the calibrations in the phylogenetic tree, especially when only a
single or very few calibrations are available (Lee, 1999; Near and
Sanderson, 2004). In general, calibrations at the root (node B in
Fig. 1) or at deeper nodes are preferred over those at shallower
nodes (e.g., nodes A and D in Fig. 1) (Hug and Roger, 2007;
Sauquet et al., 2012; van Tuinen and Hedges, 2004). The estimate
of the substitution rate is primarily based on the branches that
lie between the calibrating nodes and the tips, so that deeper cal-
ibrations capture a larger proportion of the overall genetic
variation.

Studies of various data sets have shown that analyses using
multiple calibrations tend to produce more reliable estimates than
those based on a single or few calibrations (Conroy and Van
Tuinen, 2003; Smith and Peterson, 2002; Soltis et al., 2002). A
possible explanation for this pattern is that the inclusion of only
a small number of calibrations can lead to a biased estimate of
the substitution rate if there is substantial among-lineage rate var-
iation. Additionally, the use of multiple calibrations reduces the
average genetic distance between the calibrating nodes and the
nodes that are not calibrated (Marshall, 2008; Rutschmann et al.,
2007). Another benefit of multiple calibrations is that they can
improve the accuracy of date estimates in the presence of taxon
undersampling (Linder et al., 2005).

In Bayesian molecular-clock analyses, calibrations can be
specified in the form of prior probability densities for node ages
(Drummond et al., 2006; Yang and Rannala, 2006). In some Bayes-
ian implementations of relaxed clocks, these calibration priors,
chosen by the user, interact with each other and with the prior dis-
tribution of the tree to give the marginal priors for the node ages
(Heled and Drummond, 2012; Ho and Phillips, 2009; Kishino
et al., 2001). This can lead to differences between the user-
specified and marginal calibration priors, with unexpected impacts
on the resulting estimates of divergence times (Heled and
Drummond, 2012; Warnock et al., 2012). In practice, one can
evaluate the extent of the problem by comparing the marginal
and the user-specified priors, which is typically done by running
a Bayesian analysis without sequence data. There are ongoing
efforts to provide a more direct solution to this problem (Heled
and Drummond, 2013).

Most research into molecular-clock calibrations has focussed on
empirical data. A potential limitation of these studies is that the
true divergence times and rates of evolution are unknown, making
it impossible to assess the accuracy of the phylogenetic estimates.
Here we perform an extensive simulation study to assess the
impact of different calibration practices on the estimation of evolu-
tionary timescales. By analysing data that were generated under
known conditions, we are able to measure the error in the esti-
mates of divergence times and substitution rates. We evaluate
the impact of the number and position of calibrations, and investi-
gate how these effects vary with sequence length, substitution
rate, and misspecification of the molecular-clock model. We also
test whether the correct distribution of rates among branches
can be recovered using a Bayesian model-averaging approach.
Finally, we examine the interactions among calibrations that lead
to differences between the user-specified and marginal calibration
priors. Our study provides insights into the effects of using differ-
ent calibration strategies and offers a number of guidelines for
future studies of evolutionary timescales.
2. Materials and methods

We simulated nucleotide sequence evolution to produce a large
number of datasets, which we used to test hypotheses about cali-
bration practices. The main advantage of using simulated data is
that we have complete knowledge of the evolutionary parameters,
including the phylogenetic tree, the node ages, the pattern of rate
variation among lineages, and the substitution model. Therefore,
assessing the impact of different assumptions in the analysis is
much easier than with empirical data. However, we note that sim-
ulated data are ideal in the sense that stochastic deviation from the
models used for the simulation is trivial, compared with the com-
plex evolutionary dynamics of real data. For this reason, we also
conducted an empirical case study using a simian foamy virus data
set. This data set is well suited to test our findings because there
are several calibrations available across the phylogeny of the virus.
2.1. Position of calibrations

2.1.1. Simulations
We simulated sequence evolution along phylogenetic trees of

50 taxa, generated randomly using a Yule speciation process. This
branching model assumes a constant speciation rate with no
extinction and is commonly used for data sets that include differ-
ent species. We scaled each tree so that the age of the root was 50
time units, then we multiplied the branch lengths by a random var-
iable representing the rate of evolution (substitutions/site/time),
drawn from either a lognormal or exponential distribution. We
parameterized the lognormal distribution with a mean of either
0.01 or 0.001 substitutions/site/time and a standard deviation of
0%, 10%, or 50% of the mean. We parameterized the exponential
distribution with a mean of either 0.01 or 0.001 substitutions/
site/time (note that the mean and standard deviation are equal
in the exponential distribution). These are similar to the uncorre-
lated lognormal and exponential relaxed-clock models described
by Drummond et al. (2006). Multiplying the simulated branch
lengths (in time units) by the rate yielded trees with branch
lengths measured in substitutions/site. We simulated sequence
evolution along these trees using the Jukes–Cantor model to gener-
ate alignments of 1000, 2000, and 5000 nucleotides.
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Our simulations encompass a total of 24 scenarios, correspond-
ing to six parameterizations of the lognormal relaxed clock and
two of the exponential relaxed clock, along with three different
sequence lengths. We carried out these simulations using custom
functions and the packages APE 3 (Paradis et al., 2004), geiger 1.3
(Harmon et al., 2008), and phangorn 1.7 (Schliep, 2011) in the R
2.15 programming language (R Core Team, 2008). The custom R
functions used for this project are available from figshare (http://
bit.ly/15u4OUB).

2.1.2. Phylogenetic analyses
We analysed the data in a Bayesian phylogenetic framework

using BEAST 1.7.2 (Drummond and Rambaut, 2007; Drummond
et al., 2012). We used the uncorrelated lognormal and exponential
relaxed-clock models, which assume that the substitution rate
along each branch is drawn independently from one of these distri-
butions (Drummond et al., 2006). In these models, rates along adja-
cent branches do not have an a priori correlation with each other.
We used both of the relaxed-clock models to analyse each of the
simulated data sets, so that in half of the analyses the model used
for analysis did not match that used to generate the sequence data.
Our choice of relaxed-clocks for all of our analyses is appropriate
because these models have been shown to perform well, even in
data sets with very low rate variation (Brown and Yang, 2011;
Drummond et al., 2006; Ho et al., 2005b).

We fixed the tree topology to focus on the estimates of rates
and node times without the confounding influence of phylogenetic
uncertainty. We matched the substitution model in the analysis to
that used for simulation to reduce the impact of the node-density
effect (Venditti et al., 2006). This also minimises the effect of sub-
stitution-model misspecification, which is not the focus of this
study. To match the simulation settings, we used a Yule prior for
the relative node times in the tree. The parameters of the Yule
and substitution models were estimated from the data.

To determine the effect of different calibration positions, we
selected a single random node in each simulated phylogenetic tree
and used it as the calibrating node. We specified the calibration as
a normal prior distribution for the age of the node, with the mean
set to the true (simulation) value and the standard deviation set to
10% of the mean. We chose the calibrating node randomly 100
times for each of the 24 scenarios, so that our analyses collectively
included calibrations at various positions across the tree. In total,
we performed 4800 Bayesian phylogenetic analyses, comprising
two relaxed-clock analyses of each of the 100 replicates for each
of the 24 simulation scenarios.

In each analysis, posterior distributions of parameters were
estimated by Markov chain Monte Carlo sampling (MCMC).
Lengths of MCMC analyses varied according to the size of the
sequence alignment: 107 steps for 1000 nucleotides, 109 steps for
2000 nucleotides, and 5 � 109 for 5000 nucleotides. Acceptable
sampling and convergence to the stationary distribution were
checked using LogAnalyser in the BEAST package. If effective sam-
ple sizes of any of the estimated parameters were below 200, the
analysis was conducted again with a tenfold increase in chain
length.

2.1.3. Statistical analyses
In order to evaluate the impact of calibration placement on phy-

logenetic analysis, we focused on the estimates of several key
parameters. These included the age of the root, the age of the shal-
lowest node, and the mean substitution rate. Our evaluation of
these parameters was based on the accuracy and precision of the
posterior estimates. Accuracy was quantified using an error score,
calculated as the absolute difference between the mean posterior
estimate and the true value, divided by the true value. An error
score of zero indicates that the posterior mean is identical to the
true value, reflecting an accurate estimate. Precision was quanti-
fied as the width of the 95% credibility interval of the estimate,
divided by the posterior mean. A very precise estimate would have
a precision score close to zero, with higher values representing a
decrease in precision. For the coefficient of rate variation we com-
pared the mean estimate across analyses instead of the error. We
used this approach because this parameter is calculated as the
standard deviation of branch-specific rates divided by the mean
rate and weighted by branch length in BEAST, so it is not compara-
ble to the standard coefficient of variation.

For the key parameters, we fitted linear regressions for our error
and precision scores as functions of the log10-transformed calibra-
tion age. The regressions were performed with calibration ages
transformed logarithmically (log10), because these values spanned
multiple orders of magnitude. For the estimate of the age of the
shallowest node, we considered whether the node was nested
within the calibration as a binary variable in the linear model.
We define ‘nesting’ here as the situation in which the node of inter-
est is a descendant of the calibrating node. In the tree in Fig. 1, for
example, node D is nested within node C. The results of this anal-
ysis should be interpreted with the understanding that the data
might not conform to some of the general assumptions of ordinary
linear regression. Rather than providing a predictive model, how-
ever, the purpose of this analysis is to describe the effect of calibra-
tion age on the performance of molecular-clock estimates. In this
respect, the interpretation of the slope coefficient is particularly
useful because it is a straightforward indicator of the association
between calibration age and the reliability of parameter estimates.

We note that estimates of various parameters in a given
analysis do not all necessarily have the same levels of error and
precision. For example, an analysis can yield a low-error estimate
of the age of the root, but this does not imply that there is also
low error in the age estimate of the shallowest node. To verify this,
we investigated whether the error and precision scores were
correlated between the key parameters by calculating Spearman’s
correlation coefficient (q). For the coefficient of rate variation we
used the mean estimate instead of the error score. If q > 0 for the
precision of two parameters, such as the ages of the root and the
shallowest node, one can infer that the precision of these two
parameters is positively correlated.
2.2. Number of calibrations

Our simulations to examine the effect of the number of calibra-
tions were similar to those described in the previous section. To
restrict our study to a feasible number of scenarios, we focused
on a subset of representative simulation scenarios and fixed the
sequence length to 2000 nucleotides. Specifically, we simulated
sequence evolution with a lognormal distribution of substitution
rates among branches, with mean of 0.01 and a standard deviation
of either 10% or 50% of the mean.

Bayesian phylogenetic analyses were performed in BEAST with
the settings described in the previous section, but in this case the
number of calibrating nodes was 1, 5, 10, 20, or 49. There were a
total of 20 sets of analyses, based on the two values of the standard
deviation of the rate, five numbers of calibrations, and two relaxed-
clock models used for analysis. We analysed 100 replicates for each
of these combinations.

We fitted linear regressions of the error and precision scores for
each of the parameters of interest, listed in the previous section, as
functions of the number of calibrations. The regression slopes rep-
resent the effect of the number of calibrations. As in the statistical
analysis for the age of the calibration, we considered whether the
shallowest node was nested within the calibration as a binary var-
iable in the linear model. We also investigated the correlation
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between error and precision, and between the parameter
estimates, by calculating Spearman’s correlation coefficient (q).

2.3. Model averaging and maximum a posteriori clock-model selection

For a subset of our simulations, we tested a model-averaging
approach recently implemented in BEAST (Li and Drummond,
2012). In this method, the MCMC draws samples from a set of can-
didate clock models. In the current implementation, samples can
only be drawn from an uncorrelated lognormal or exponential
clock. Each model is sampled in proportion to its posterior proba-
bility, so the resulting estimates are weighted according to the
probabilities of the two models. Although the purpose of this
method is not model selection, one can infer that the model with
the best fit is that with the highest posterior probability, known
as the maximum a posteriori (MAP) model (Baele et al., 2013).

We tested whether the MAP model corresponded to that used
to generate the data by conducting ten replicates of 32 simulation
scenarios, for a total of 320 analyses. We have used fewer
replicates here to ease computational demand, allowing us to
investigate the performance of the method under a wide range of
simulation conditions. The scenarios included different numbers
of calibrations, ranging from 1 to 49, rates sampled from a lognor-
mal or an exponential distribution, and two levels of rate variation
(s.d. 10% and 50% for the lognormal, and of 0.001 and 0.01 for the
exponential). The settings used in the phylogenetic analyses were
similar to those described above, but instead of fixing the clock
model we allowed the MCMC to sample from the lognormal or
exponential clock models.

2.4. Comparison of user-specified and marginal priors

For a subset of simulations, we compared the user-specified
prior, marginal prior, and posterior distributions of the calibrating
nodes. In this paper, the user-specified prior refers to the prior
distribution that the user has chosen for the purposes of calibra-
tion, whereas the marginal prior is the resulting prior distribution
for the age of the calibrating node after accounting for possible
interactions with the remaining priors (such as the tree prior). As
with our other simulations, this investigation involved sequences
simulated along a Yule tree with a depth of 50 time units. Substi-
tution rates among branches were assumed to follow a lognormal
rate distribution with a mean of 0.01 substitutions/site/time and
standard deviation of 10% of the mean. We simulated sequence
evolution along the tree using the Jukes–Cantor model to generate
alignments of 1000, 2000, and 5000 nucleotides.

Each of the data sets was analysed using the lognormal relaxed
clock in BEAST with 2, 10, 20, and 49 calibrating nodes selected at
random. The calibrations were implemented as normal priors, with
the mean chosen to match the true (simulation) value and with a
standard deviation of 10% of the mean. To estimate the marginal
prior distribution of the age of each calibrating node, each analysis
was conducted without sequence data so that MCMC samples were
drawn from the joint prior distribution. Simulations and
phylogenetic analyses were replicated ten times. To compare the
user-specified prior, marginal prior, and posterior distributions of
the age of each calibrating node, we calculated the mean and the
coefficient of variation. These measures can reveal differences
related to the skewness and kurtosis of the distributions.

2.5. Case study: Simian foamy virus

2.5.1. Data collection
We analysed a data set comprising sequences from simian

foamy virus (SFV). This single-stranded DNA virus is endemic to
all primates, causing chronic and asymptomatic infections
(Meiering and Linial, 2001). The host and virus tree topologies
are congruent and are highly supported, with cross-species
transmission thought to be rare and limited to closely related host
species (Liu et al., 2008). The most well known cases involve
humans infected through contact with chimpanzee blood
(Sandstrom et al., 2000). Thus, there is strong support for long-
term codivergence between SFV lineages and their primate hosts.
Under this assumption, a previous study used the divergence times
of the host species to calibrate the molecular clock of SFV (Switzer
et al., 2005). The highly supported topology, reliable calibrations,
and availability of sequence data make SFV a useful case for study-
ing the effects of the placement of calibrating nodes.

We downloaded 18 complete genome sequences of SFV (11,954
nucleotides) from GenBank (Supplementary Table S1). Although
this virus infects all primates screened so far, we chose SFV
sequences from host species that were represented by multiple
SFV samples. These host species were common chimpanzee (Pan
troglodytes), gorilla (Gorilla gorilla), Bornean orangutan (Pongo pyg-
maeus), greater spot-nosed guenon (Cercopithecus nictitans), green
monkey (Chlorocebus sabaeus), Barbary macaque (Macaca sylvanus),
and common marmoset (Callithrix jacchus). The sequences were
aligned using Clustal W2 v2.0 (Larkin et al., 2007) and visually
inspected for possible frameshifts or other anomalies.

We included five calibrations based on SFV-primate codiver-
gence events with the associated uncertainties, as reported by
Switzer et al. (2005). We chose this set of calibrations to allow
direct comparison with the results from the original study, rather
than to provide an accurate estimate of the timescale of SFV or
its primate host species. These calibrations were: (i) Cercopitheci-
dae–Hominidae split, 28 Ma with standard deviation (s.d.) of 2.5;
crown Cercopithecidae, 25 Ma with s.d. of 2.5; crown Hominidae,
16.52 Ma with s.d. of 2.5; (iv) Pan/Homo-Gorilla split, 13 Ma with
s.d. of 2.5; and (v) crown of the most divergent Pan lineages at
1.2 Ma with s.d. of 1.

2.5.2. Phylogenetic analyses
We analysed the SFV data using similar settings to those in our

simulation study. We fixed the topology of the SFV lineages to
match that of their primate hosts, as reported by Switzer et al.
(2005). The GTR + G substitution model was chosen according to
the Bayesian information criterion. Bayesian phylogenetic analysis
was conducted using BEAST. Samples from the posterior were
drawn every 105 MCMC steps over a total of 109 steps. Conver-
gence to the stationary distribution was checked by inspection of
the MCMC trace, and effective sample sizes were >500 for all
parameters. We ran five separate analyses, using each of the five
calibrations in turn. We used a Yule prior for the tree and com-
pared the fit of the uncorrelated lognormal and exponential
relaxed clocks using Bayes factors with the stepping-stone estima-
tor of the marginal likelihood (Xie et al., 2011). In most cases, the
Bayes factor either indicated no strong preference for either of
the two models, or favoured the exponential model. Therefore,
we always used the exponential relaxed clock for our analyses
because it has fewer parameters than the lognormal relaxed clock
(Supplementary Table S2).

2.5.3. Statistical analyses
We used the same measures of precision and error as in our

simulation study, with the ‘true’ values of the node ages considered
to be the mean ages of the calibrations. The true substitution rate
for this data set was unknown, so for this parameter we only
analysed its precision.

Ordinary linear regressions are inappropriate for small data sets
such as our SFV case study, with only five possible calibrating
nodes. Therefore, we used Spearman’s correlation coefficient (q)
to investigate the association between the precision and error of



S. Duchêne et al. / Molecular Phylogenetics and Evolution 78 (2014) 277–289 281
the estimates of the rate and node ages, with the calibration age on
a log10 scale.

3. Results

3.1. Position of calibrations

Our study of the impact of the position of calibrating nodes con-
sidered various values for substitution rates, among-lineage rate
variation, sequence lengths, and relaxed-clock models. We found
that misspecification of the relaxed-clock model always had a neg-
ative impact on the error and precision of estimates of rates and
node times. Other treatment variables, such as among-lineage rate
variation and sequence length, did not have a consistent impact on
error and precision. For instance, estimates based on shorter
sequences (1000 nucleotides) did not always have higher error
and lower precision than the estimates based on longer sequences
(2000 and 5000 nucleotides). This suggests that misspecification of
the relaxed-clock model is the major cause of estimation unreli-
ability in our analyses, and that its effect is not alleviated by using
longer sequences or data with lower among-lineage rate variation.

We investigated the effect of the position of the calibration on
parameter estimates in the 48 combinations of simulation scenar-
ios and analysis settings. The results were similar for all settings; to
simplify our discussion, we show the results for three of the 48
combinations in Figs. 2 and 3 and in Table 1. The error and preci-
sion significantly improved as a function of calibration age for
three metrics: the age of the root, the age of the shallowest node,
and the substitution rate (Table 1; Figs. 2 and 3). This improvement
was greater for the analyses in which the molecular-clock model
was misspecified, as shown by the regression coefficients (Table 1).

There were no significant differences when the shallow node
was nested within the calibration, so we report the model coeffi-
cients without this term. Deeper calibrations appeared to be bene-
ficial for estimates of all the parameters of interest, but the greatest
Fig. 2. Error score for the estimate of the age of the root (A), the age of the shallowest no
as functions of the calibration age (log10 scale). In panels (A) through (C) the y-axis cor
coefficient of rate variation. Marker shape and shade represent the following analytica
distribution with mean 10�3 and standard deviation of 10�4, and analysed with a lognor
rate distribution with mean 10�2 and standard deviation 5 � 10�3, and analysed with a l
lognormal rate distribution with mean 10�3 and standard deviation 10�4, and analyse
simulations in which the shallow node was nested within the calibration.
improvements were found in the error of the estimate of the
substitution rate. One interesting result is that the error in the
estimate of the age of the shallowest node was sometimes very
high, even when deep calibrations were used. The mean estimate
of the coefficient of rate variation was not associated with the cal-
ibration age. However, this parameter appeared to be sensitive to
clock-model misspecification. When the clock model was misspec-
ified, the estimated coefficient of rate variation was higher and less
precise than when the clock model matched that used to generate
the data.

We found a correlation between error and precision scores for
estimates of key parameters, including the substitution rate, age
of the root, and the age of the shallow node. The q values for
pairwise comparisons of parameters were between 0.72 and 0.97
for the error and were 0.99 for all comparisons of the precision
score (Supplementary Table S3). Therefore, an analysis with low
error and high precision for one of the parameter estimates would
display similar relative levels of error and precision for the
estimates of other parameters.

3.2. Number of calibrations

The association between the number of calibrations and the
error and precision of parameter estimates was similar across the
20 analytical settings; we present detailed results for three repre-
sentative cases (Table 2; Figs. 4 and 5). The error and precision
scores were more variable when fewer calibrations were used.
Slope terms for the regressions of estimation error and precision
as a function of the number of calibrations were significant for
all parameters of interest, including the coefficient of rate varia-
tion. For the estimates of the age of the shallow node, there were
no significant differences when we considered whether or not it
was nested within the calibrations, so the results are shown with-
out including this term in the linear models. Although the slopes
were always negative, their values ranged between �2.7 � 10�2
de (B), the substitution rate (C), and the mean of the coefficient of rate variation (D),
responds to the error score, where as in panel (D) it is the estimated mean of the
l settings: (P1) sequence length of 5000 nucleotides, a simulated lognormal rate

mal relaxed clock; (P2) sequence length of 1000 nucleotides, a simulated lognormal
ognormal relaxed clock; and (P3) sequence length of 2000 nucleotides, a simulated
d with an exponential relaxed clock. The solid markers in panel (B) represent the



Fig. 3. Precision score for the estimate of the age of the root (A), the age of the shallowest node (B), the substitution rate (C), and the coefficient of rate variation (D), as
functions of the calibration age (log10 scale). Note that lower values indicate higher precision. Marker shape and shade represent the analytical settings described in the
caption for Fig. 2. The solid markers in panel (B) represent the simulations in which the shallow node was nested within one of the calibrations.

Table 1
Slopes and P-values for the error and precision of key parameters as functions of the age of the calibrating node (log10 scale). Low error and high precision correspond to lower
values for these scores. In the case of the coefficient of rate variation, the mean estimate was used instead of the error. P1, P2, and P3 refer to the analyses described in Figs. 2 and
3. The estimate for the shallowest node corresponds to the node with the most recent estimated divergence time.

Estimated parameter per analysis Error Precision

Slope P-value Slope P-value

Root node P1 �0.142 <0.001 �0.493 <0.001
P2 �0.163 <0.001 �0.621 <0.001
P3 �0.355 <0.001 �0.976 <0.001

Shallowest node P1 �0.118 <0.001 �0.394 <0.001
P2 �0.096 <0.001 �0.373 <0.001
P3 �0.207 <0.001 �0.568 <0.001

Substitution rate P1 �0.349 <0.001 �0.456 <0.001
P2 �0.789 <0.001 �0.602 <0.001
P3 �3.262 <0.001 �0.834 <0.001

Coefficient of rate variation P1 0.001* 0.277* 0.007 0.25
P2 �0.002* 0.802* �0.001 0.82
P3 �0.003* 0.100* �0.0014 <0.001

* These values for the coefficient of rate variation correspond to the estimated parameter value, instead of the error.

Table 2
Slopes and P-values for the error and precision scores for the key parameters as functions of the number of calibrations. N1, N2, and N3 refer to the analyses described in Figs. 4
and 5. The estimate for the shallowest node corresponds to the node with the most recent estimated divergence time.

Estimated parameter per analysis Error Precision

Slope P-value Slope Slope

Root node N1 �0.001 <0.001 �0.01 <0.001
N2 �0.004 <0.001 �0.02 <0.001
N3 �0.004 <0.001 �0.021 <0.001

Shallowest node N1 �0.002 <0.001 �0.01 <0.001
N2 �0.006 <0.001 �0.032 <0.001
N3 �0.007 <0.001 �0.032 <0.001

Substitution rate N1 �0.003 <0.001 �0.011 <0.001
N2 �0.015 <0.001 �0.02 <0.001
N3 �0.027 <0.001 �0.02 <0.001

Coefficient of rate variation N1 <0.001* 0.023* �0.0234 <0.001
N2 �0.0006* <0.001* �0.012 <0.001
N3 �0.0003* <0.001* �0.015 <0.001

* These values for the coefficient of rate variation correspond to the estimated parameter value, instead of the error.
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Fig. 4. Error score for the estimate of the age of the root (A), the age of the shallowest node (B), the substitution rate (C), and the mean of the coefficient of rate variation (D),
as functions of the number of calibrations. In panels (A) through (C) the y-axis corresponds to the error score, where as in panel (D) it is the estimated mean of the coefficient
of rate variation. Marker shape and shade represent the following analytical settings: (N1) simulated lognormal rate distribution with mean 10�2 and standard deviation
10�3, analysed with a lognormal relaxed clock; (N2) simulated lognormal rate distribution with mean 10�2 and standard deviation 10�3, analysed with an exponential relaxed
clock; and (N3) simulated lognormal rate distribution with mean 10�2 and standard deviation 5 � 10�3, analysed with an exponential relaxed clock. The solid markers in
panel (B) represent the simulations in which the shallow node was nested within one of the calibrations. Note that the data have been jittered along the x-axis.

Fig. 5. Precision score for the estimate of the age of the root (A), the age of the shallowest node (B), the substitution rate (C), and the coefficient of rate variation (D), as
functions of the number of calibrations. Note that lower values indicate higher precision. Marker shape and shade represent the analytical settings described in the caption for
Fig. 4. Note that the data have been jittered along the x-axis.
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and �1 � 10�4, reflecting wide variation in the strength of this
association (Table 2; Figs. 4 and 5).

Increasing the number of calibrations was beneficial in all cases.
However, the association between error and precision of parameter
estimates and the number of calibrations was stronger in analyses
with high among-lineage rate variation and when the clock model
was misspecified (Table 2; Figs. 4 and 5). Although the estimates of
all key parameters appeared to improve with an increasing number
of calibrations, this was especially important for the substitution
rate, which displayed the steepest slope. For the estimate of the
coefficient of rate variation, the number of calibrations only mar-
ginally affected the estimate, with slope values of the order of 10�4.
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3.3. Model averaging and maximum a posteriori clock model selection

The posterior probabilities of the MAP clock models were
always very high, ranging from 0.99 to 1.0. This implies that the
estimates were obtained using one prevailing model, rather than
a mixture of the two candidate models. In this sense, the estimates
are equivalent to those obtained when the analysis is conditioned
on a single clock model.

Model averaging performed well when the rates were simu-
lated according to an exponential distribution. It identified the cor-
rect clock model in at least seven out of ten simulations. In some
instances in which the mean rate was low (0.001), it chose the cor-
rect clock in all of the simulations (Supplementary Table S4).

The performance of model averaging in favouring the correct
model was poor for the simulations with lognormal rate distribu-
tions. In one simulation scenario, it sampled from the correct clock
model preferentially in six out of ten simulation replicates. In the
remaining scenarios, it could not identify the correct model in
the majority of the simulation replicates. In a few scenarios, it
always misclassified the model. The performance of this method
was independent of the number of calibrations (Supplementary
Table S4).

3.4. Comparison of user-specified and marginal priors

Our results for the user-specified prior, marginal prior, and pos-
terior distributions of node ages were similar across replicates. We
focus our discussion on one shallow and one deep node for the
analyses with 2, 10, 20, and 49 calibrations (Table 3; Figs. 6 and
7). The shallow and deep nodes corresponded to the most recent
and oldest calibrating nodes, respectively.

The distributions of the user-specified and the marginal priors
were nearly identical. Differences in the means were between
0.0078 and 0.98 time units, while those for the coefficient of vari-
ation ranged from 0.0001 to 0.07. These results indicate that there
was no conflict among calibrations, even when the analysis
included a very large number of calibrating nodes.

There was a consistent pattern in the posterior age distributions
of calibrating nodes. In all cases, the posteriors for different
sequence lengths largely overlapped, and the 95% credibility inter-
vals were narrower than in the user-specified and marginal priors.
However, this association was stronger for an increasing number of
calibrations, rather than increasing sequence length. We attribute
this to some degree of interaction among the large number of cal-
ibrations, resulting in a more informative analysis.

3.5. Case study: Simian foamy virus

In our case study of simian foamy virus, we were able to test
whether our findings in the simulation analyses were replicated
Table 3
Mean and coefficient of variation of user-specified prior distributions, marginal prior distr
and 5000 nucleotides. Values in the table describe the distributions shown in Figs. 6 and
recent and oldest estimated divergence times, respectively.

Node age
estimate

Number of
calibrations

User-specified prior Marginal prior mean

Mean Coefficient of
variation

Mean Coefficient of
variation

Shallow
node

2 4.49 0.10 4.505 0.10
10 3.39 0.10 3.382 0.07
20 4.01 0.10 4.03 0.10
49 4.08 0.10 4.071 0.10

Deep node 2 27.97 0.10 26.984 0.11
10 24.53 0.10 24.611 0.09
20 20.96 0.10 20.435 0.10
49 20.12 0.10 20.151 0.08
in empirical data. When either of the two shallowest calibrations
was used, the ages of the nodes for which we had calibrations were
estimated to be much younger than their corresponding calibra-
tion age. In fact, the estimated mean could be up to three orders
of magnitude lower than the calibration age (Table 4). Substitution
rates inferred using the two shallowest calibrations, which yielded
lower estimates of node ages, were an order of magnitude higher
than when the other calibrations were employed.

We found no association between precision in the estimates
and calibration age, with correlation coefficients between 0.063
and 0.062 for all calibrating nodes. An exception to this was the
estimates of the substitution rate, displaying a negative correlation
with the age of the calibrating node (q = �0.74). This result is con-
sistent with those of our simulation study.

The results for error score and calibration age stand in contrast
with those for estimation precision. The error was lower with
increasing calibration depth, with correlation coefficients in the
range of �0.73 and �0.81 for most nodes. The exception was the
shallowest node (Pan crown), for which we found that error
increased with calibration depth (Supplementary Table S5). This
can be explained by the fact that the age of this node was consid-
erably overestimated when we employed the two deeper calibra-
tions (Cercopithecidae–Hominidae split and Cercopithecidae
crown) (Table 4). These overall results for estimation error and pre-
cision are consistent with our findings in our simulation study,
which showed that the benefit of using deeper calibrations is
greater for the estimation error than it is for the precision score.
4. Discussion

Our simulation study reveals a number of patterns that are
informative for phylogenetic studies of evolutionary timescales.
Importantly, we found that sequence length did not considerably
affect the molecular-clock estimates. This is due to the nature of
our simulations, which resulted in very informative sequence data.
Previous studies have found that sequence length is an important
factor with shallow phylogenies or uninformative sequences
(Brown and Yang, 2010). As sequence length increases, however,
the error in estimates of node ages declines to a theoretical, non-
zero limit (dos Reis and Yang, 2013; Rannala and Yang, 2007).
4.1. Clock-model choice

The estimates of substitution rates and timescales were more
strongly influenced by the choice of relaxed-clock model than by
the level of rate variation among lineages. This is consistent with
the results of previous simulation studies, which have shown that
estimates of branch-specific rates are sensitive to the choice of
relaxed-clock model (Drummond et al., 2006; Heath et al., 2012;
ibutions, and posterior distributions of node ages for sequence lengths of 1000, 2000,
7. The shallow and deep nodes corresponded to the calibrating nodes with the most

Posterior with 1000
nucleotides

Posterior with 2000
nucleotides

Posterior with 5000
nucleotides

Mean Coefficient of
variation

Mean Coefficient of
variation

Mean Coefficient of
variation

4.659 0.08 4.653 0.08 4.632 0.08
3.447 0.06 3.388 0.06 3.448 0.06
4.079 0.08 3.988 0.07 3.87 0.07
4.264 0.07 4.354 0.06 4.116 0.06

25.715 0.09 25.825 0.09 26.03 0.09
23.924 0.06 25.547 0.05 24.601 0.05
20.618 0.04 20.818 0.04 20.573 0.04
19.073 0.04 19.511 0.03 19.407 0.03



Fig. 6. Age distribution of a selected shallow node when the analysis includes 2 (A), 5 (B), 20 (C), and 49 (D) calibrating nodes. Line shades and patterns correspond to the
user-specified prior distributions (M1), marginal prior distributions (M2), and posterior distributions for sequence lengths of 1000 (M3), 2000 (M4), and 5000 nucleotides
(M5).

Fig. 7. Age distribution of a selected deep node when the analysis includes 2 (A), 5 (B), 20 (C), and 49 (D) calibrating nodes. Line shades and patterns represent the same
distributions as in Fig. 6.
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Ho et al., 2005b). Our findings emphasise the importance of
rigorous selection of an appropriate relaxed-clock model, which
can be done using various Bayesian methods (Baele et al., 2012;
Lartillot and Philippe, 2006; Linder et al., 2005) or in a likelihood
framework (Paradis, 2013). In this respect, a crucial limitation is
that it is difficult to determine whether any of the available models
provides an accurate reflection of the actual evolutionary process
that produced the sequence data.

Model averaging is an attractive approach because the
estimates of parameters are obtained from a mixture of models
in proportion to their probabilities, rather than being conditioned
on a single model (Li and Drummond, 2012). It can also be used
to assess the fit of candidate models according to their posterior
probabilities. Baele et al. (2013) found that this method often mis-
classified the clock model when the data were simulated according
to a Yule speciation process with a lognormal rate distribution. We
confirmed this result in our analyses, but also obtained the striking
result that increasing the number of calibrations did not improve
the performance of the model-averaging approach in favouring
the correct clock model. If the model-averaging approach tends
to sample the incorrect clock model, the errors in the estimates
will be similar to those obtained when using the incorrect model



Table 4
Estimated node ages (Ma) and estimated rate of evolution (substitutions/site/Myr) for the different calibrations in the analysis of simian foamy virus. 95% CI denotes the width of
the 95% credibility interval.

Calibrating node Cercopithecidae–
Hominidae (True age:
mean = 28 and
s.d = 2.5)

Crown
Cercopithecidae
(True age: mean = 25
and s.d = 2.5)

Crown Hominidae
(True age:
mean = 16.52 and
s.d = 2.5)

Pan/Homo-Gorilla
(True age:
mean = 13 and
s.d = 2.5)

Crown Pan (True
age: mean = 1.2 and
s.d = 1)

Rate of
evolution

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Cercopithecidae–Hominidae 27.31 8.36 26.08 9.76 19.88 13.86 13.58 12.43 4.74 7.13 0.02 0.009
Crown Cercopithecidae 25.16 9.89 24.21 8.38 22.65 10.33 20.79 11.17 3.35 8.04 0.02 0.009
Crown Hominidae 20.72 20.58 19.13 24.11 15.29 8.61 10.34 9.73 3.06 5.49 0.03 0.02
Pan/Homo-Gorilla 3.49 722.01 2.79 7160.12 3.06 684.55 2.48 505.78 2.09 3840.45 0.174 3258.34
Crown Pan 0.42 496.39 0.09 4917.16 0.37 459.89 0.22 178.01 0.34 140.10 0.176 3290.64
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in a standard analysis. For empirical data, it is difficult to deter-
mine whether this method can recover the true rate distribution,
so it may be necessary to extend the model-averaging approach
to include a wider variety of rate distributions.

4.2. Calibration number and placement

The position and number of calibrating nodes are crucial
components of molecular-clock analyses. This is relevant even
when an informative sequence alignment, reliable calibrations,
and appropriate relaxed-clock model are all at hand, which is the
case for our simulations. In empirical studies, these factors can
be largely uncertain, so the position and number of calibrations
can have a stronger impact than that observed in our simulations.
In all cases, increasing the number of calibrations and preferring
calibrations closer to the root led to an improvement in estimates
of substitution rates and divergence times. This is consistent with
the findings of previous studies based on simulated and empirical
data (Paradis, 2013; Sauquet et al., 2012). As a consequence, efforts
to include a greater number of calibrations should be beneficial to
molecular-clock analyses of empirical data, even when there is sta-
tistical support for rate homogeneity among lineages.

A practical concern is that there is a paucity of reliable calibra-
tions in many taxonomic groups. It is not trivial to determine
whether using a single reliable calibration is more appropriate
than using several that are less reliable overall (Lee, 1999;
Sanders and Lee, 2007). This is difficult to test because the accuracy
and precision of fossil and biogeographic calibrations remain
poorly understood (Andújar et al., 2014; Gandolfo et al., 2008;
Magallón, 2004; Near et al., 2005). Our results show that levels
of error and precision can vary widely when single calibrations
are used. However, a single calibration can be effective if it is able
to capture much of the among-lineage rate variation in the data,
which is more likely to be achieved using calibrations at deep
nodes in the tree.

The benefits of preferring deep over shallow calibrations, and
multiple over few calibrating nodes, can be explained by the
reliability of the estimate of the substitution rate. The estimate of
this parameter improved considerably when deep or multiple
calibrations were used. For instance, consider a molecular-clock
analysis calibrated at node A in Fig. 1. If the two lineages descend-
ing from node A have a particularly high substitution rate, the
mean rate across the tree will be overestimated and the timescale
will be underestimated (Ho et al., 2005a; Lukoschek et al., 2012;
Phillips, 2009). If the analysis is instead calibrated at the root (node
B), the estimate of the substitution rate will be less subject to the
vagaries of lineage-specific rates. Similarly, a rate estimated with
two or more calibrating nodes will generally be more reliable than
when node A is the only calibrating node.

In our simulations, the evolutionary rates were uncorrelated
among branches. Although this model has been shown to be appro-
priate for many data sets (Brown et al., 2008; Drummond et al.,
2006; Ho, 2009; Linder et al., 2011), some studies have found sta-
tistical support for models with rate autocorrelation (Lepage et al.,
2007). When there are few or shallow calibrations, the risk of
obtaining biased estimates of rates and divergence times can be
higher when rates are autocorrelated among lineages than when
they are uncorrelated. This is because the substitution rate would
typically be more similar between parent and daughter branches
than for a random pair of branches. For this reason, the reliability
in the estimates of node ages might also depend on whether the
nodes are nested within the clade defined by the calibrating node.
To illustrate this point, a calibration at node C in Fig. 1 might be
more effective for estimating the age of node D than for estimating
the age of node A. Our recommendation of preferring deep and
multiple calibrating nodes is also applicable in this case because
it results in a higher proportion of all nodes being descendent from
the calibrating node, when compared with strategies with few and
shallow calibrating nodes. As we expected, we did not obtain more
reliable estimates for nodes that were nested within the calibration
because in our data the rates were uncorrelated, but we note that it
may be an important aspect for empirical data sets that display
rate autocorrelation.

When the focus is the estimate of the age of a shallow node,
calibrations at the root or at very deep nodes can lead to a high
error and low precision. This is demonstrated in our simulations,
where the error in the estimate of the shallowest node was some-
times very high (Fig. 2B). Although analyses with deep calibrations
can estimate many parameters more reliably than those with shal-
low calibrations, the rates along shallow branches are difficult to
estimate with precision if rate variation is high. This would lead
to unreliable estimates of the age of shallow nodes. This problem
can be minimised by using an appropriate clock model or by
including calibrations distributed throughout the tree.

Our case study of simian foamy virus shows that the impact of
inadequate calibration strategies can be substantial, with effects
that are difficult to predict in empirical data. In the case of viruses,
an additional problem to the error in the rate estimate is that there
is often substantial mutational saturation, especially in the basal
branches of the tree. In some cases, even parameter-rich substitu-
tion models can fail to account for multiple substitutions ade-
quately (Holmes, 2003). As a consequence, the lengths of deep
branches in the tree will be underestimated, a phenomenon that
has been referred to as ‘tree compression’ (Phillips, 2009). This is
a probable cause of the dramatic underestimation of the timescale
that we observed when analysing the simian foamy virus using
shallow calibrations.

There are several strategies for mitigating the effect of tree
compression on the estimate of the overall timescale of the tree.
Rigorous selection of the best-fitting substitution model is crucial
because branch-length estimation is sensitive to the parameters
in the model, such as the proportion of invariant sites and the dis-
tribution of among-site rate heterogeneity (Sullivan and Joyce,
2005). When available substitution models underestimate lengths
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of basal branches, deep calibrations can be especially useful. A
calibration at the root substantially reduces the potential for
underestimating the ages of deep nodes. Recent work on empirical
estimation of virus substitution models is of particular interest
here, since empirical models have been shown to fit the data dra-
matically better than models estimated using standard parametric
approaches (Bloom, 2014).

Although the strategy of using deep calibrations to alleviate tree
compression can improve estimates of node ages, there are some
potential repercussions that need to be considered. The mean
substitution rate will be underestimated because the number of
substitutions in the basal branches is underestimated, which in
turn leads to an inflation of rate variation among lineages. Another
consequence is overestimation of the ages of shallow nodes, a
behaviour known as ‘tree extension’ (Phillips, 2009). Tree exten-
sion can be problematic in the analysis of taxonomic groups with
few or no available calibrations. In such cases, it is common prac-
tice to include an outgroup taxon for which the divergence time
with the ingroup is known (van Tuinen and Hedges, 2004).
Although this brings the benefit of a calibration at the root, the
inclusion of an outgroup taxon modifies the data set and the result-
ing estimates. If the outgroup taxon is very divergent from the
ingroup, the basal branches of the tree will be prone to saturation.
Furthermore, the substitution rates of the ingroup and outgroup
might be very different, leading to high among-lineage rate varia-
tion, and low precision and accuracy in the estimates of node ages.
This pattern is similar to some of our simulations, such as those
with high rate variation, and those with low rate variation
(simulation scenarios P1 and P2, respectively, in Figs. 2 and 3).
We recommend that outgroup taxa should be chosen with the
aim of minimising among-lineage rate variation. This is a critical
point for population-level data, where including an outgroup taxon
might have a particularly detrimental impact (Endicott et al., 2009;
Ho and Larson, 2006).

4.3. Interaction among calibrations

A potential problem specific to Bayesian phylogenetic analyses
is that the marginal priors for the ages of calibrating nodes can
differ from the calibrations specified by the user. When multiple
calibrations are employed, the user is incorporating information
about the temporal order of the nodes and the phylogenetic rela-
tionships among lineages. Consequently, incompatibilities in
topology or overlap between the calibration densities for different
nodes will cause the marginal priors to differ from those specified
by the user (Heled and Drummond, 2012; Kishino et al., 2001;
Warnock et al., 2012). Our simulation study did not yield such
differences between the user-specified and the marginal priors.
However, our analyses were done using fixed tree topologies and
our calibrations corresponded closely to the true node ages. These
two factors minimise the possibility of conflict between calibra-
tions. For real data sets, inspecting the marginal priors is essential
because the phylogeny and actual divergence times are usually
unknown. In addition, it should be borne in mind that multiple cal-
ibrations induce higher prior probabilities for the topologies that
are consistent with the temporal order of nodes specified by the
calibrations (Ho and Phillips, 2009).

We chose to use normally distributed calibrations in our study,
but calibrations can also be modelled using lognormal, exponen-
tial, gamma, and uniform distributions, among others (Heath,
2012; Ho, 2007; Yang and Rannala, 2006). The choice of distribu-
tion is important because the information content of the prior
depends on the concentration of the density around the central
value. With calibrations of low information content, such as those
modelled using wide uniform distributions, there is a higher prob-
ability that the user-specified and marginal densities will differ.
This is due to maximum or minimum bounds being inadvertently
enforced on some node ages because of overlap of calibration den-
sities with low kurtosis. Our calibrations had a standard deviation
of 10% of the mean, but in practice the uncertainty would often be
much greater. Accordingly, we support recommendations by previ-
ous authors that the marginal priors should be inspected before
proceeding with phylogenetic analysis (Heled and Drummond,
2012; Warnock et al., 2012). Heled and Drummond (2013) have
recently implemented a potential solution for this problem.
4.4. Estimating among-lineage rate variation

Estimates of the coefficient of rate variation, which measures
the degree of rate heterogeneity among lineages, did not seem to
be influenced by the position and number of calibrations. This
contradicts the expectation that among-lineage rate variation
might be underestimated when there are shallow or few calibrat-
ing nodes (Benton and Donoghue, 2007; Ho and Phillips, 2009).
We found that analyses involving misspecified clock models and
shorter sequences led to a higher estimate of the coefficient of rate
variation than did those with longer sequences and the correct
clock model specified in the analysis, despite the fact that the esti-
mate of this parameter should be the same. This pattern was con-
sistent regardless of the position and number of calibrations.
Although the coefficient of rate variation is useful for quantifying
the degree to which the data conform to a strict clock, we recom-
mend careful interpretation when comparing estimates across
different data sets. According to our results, the estimate of this
parameter might be highly sensitive to stochastic variation in the
data, which is expected to increase with shorter sequence lengths.
Therefore, high estimates for the coefficient of rate variation might
indicate high stochastic variation, and not necessarily true among-
lineage rate variation.
5. Conclusions

Overall, our study provides a number of insights into the impact
of different calibration schemes on the estimates of evolutionary
rates and timescales. The availability of reliable calibrations varies
considerably among taxonomic groups. Some taxa have poor fossil
and biogeographic records, leading to unreliable calibrations for
molecular-clock analyses. In these cases, understanding the impact
of different calibration strategies can help to improve estimates of
evolutionary rates and timescales.

Our study addresses some general problems of molecular clock
calibrations, but there remain some important areas for future
study. Calibrations at the tips of the phylogenetic trees are effective
when there is a measurable amount of evolutionary change
between the collection time of samples (Drummond et al., 2003;
Rambaut, 2000). They are mostly used for population-level data
when ancient DNA sequences are available, or for organisms with
very high rates of evolution, such as some viruses and bacteria.
Previous studies have found that molecular-clock estimates are
more reliable when tip calibrations have a wide temporal spread
(Molak et al., 2013). The combination of calibrations at the tips
and internal nodes is possible for some data sets, but further
research is necessary to determine the effectiveness of this
practice.

Misspecification of the clock model is a large source of error,
especially when there are few informative calibrations. Although
there has been substantial progress in this field, it may still be nec-
essary to develop new models that accommodate among-lineage
rate variation more accurately. Methods to explore model space,
such as the model-averaging approach that we tested, can also
be improved to include a wider array of models. Finally, the
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uncertainty in the topology and the use of different distributions
for the calibrations is relevant for many empirical studies. Our sim-
ulation framework provides a starting point to explore this topic
and test possible solutions. Future research in these directions will
enable the continued development of molecular-clock models and
will improve our estimates of the timescale of the tree of life.
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