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Abstract
1.	 Non-	random	species	sampling	is	the	rule	rather	than	the	exception	in	phylogenet-
ics,	but	most	phylogenetic	methods	to	infer	macroevolutionary	and	macroecologi-
cal	processes	assume	that	the	tips	of	the	phylogenetic	tree	are	either	completely	
sampled	or	randomly	sampled.	In	this	study,	we	focus	on	extending	the	popular	
BiSSE	framework	to	better	account	for	non-	random	sampling	of	species.	The	ex-
isting BiSSE correction (which we describe hereafter as the unresolved clade cor-
rection)	cannot	be	used	on	trees	with	clades	of	more	than	about	200	species,	or	
when	lineages	that	originate	near	the	root	are	not	sampled.

2.	 We	propose	new	correction	that	does	not	have	these	two	limitations.	To	assess	
the	performance	of	our	correction	relative	to	the	unresolved	clade	correction,	we	
simulate	trees	using	a	common	sampling	strategy	in	which	representative	species	
of	higher	clades	(e.g.	genera)	are	sampled	to	include	in	a	phylogeny.

3.	 Compared	to	the	unresolved	clade	correction,	we	show	that	our	new	correction	
gives	 less	biased	parameter	estimates;	has	higher	power	but	a	slightly	elevated	
false	positive	rate	to	detect	state	dependence	in	speciation	and	extinction	rates;	
and	is	less	sensitive	to	a	failure	to	sample	all	extant	groups	of	taxa.	Over	all	simula-
tion	scenarios,	our	correction	perform	equally	well	under	conditions	where	the	
unresolved	 clade	 correction	 is	 applicable	 and	 conditions	where	 the	unresolved	
clade	correction	is	inapplicable.

4. Given that both our correction and the unresolved clade correction have their 
own advantages and disadvantages, we suggest combining the two corrections. 
This	can	be	done	by	applying	our	correction	to	groups	that	exceed	the	size	limit	of	
the	unresolved	clade	correction	or	to	account	for	the	uncertainties	in	the	place-
ment of the lineages that originate near the root.

K E Y W O R D S

extinction,	representative	sampling,	speciation,	state-dependent	diversification,	trait	
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1  | INTRODUC TION

Phylogenies	 of	 species	 or	 higher	 groups	 provide	 opportunities	 to	
test	 hypotheses	 about	 macroevolutionary	 and	 macroecological	

processes.	For	example	 they	can	be	used	to	 infer	associations	be-
tween	geography	(Ronquist	&	Sanmartín,	2011),	life	history	(Weber	
&	 Agrawal,	 2012)	 and	 diversification	 (Morlon,	 2014),	 potentially	
throwing	 light	on	 long-	known	but	poorly	understood	patterns	 like	
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the	latitudinal	biodiversity	gradient	(Wiens	&	Donoghue,	2004).	New	
methods	(Morlon,	2014;	O’Meara,	2012)	provide	increasingly	rigor-
ous	statistical	frameworks	in	which	such	hypotheses	can	be	tested,	
but	a	number	of	important	challenges	remain.	One	of	these	involves	
accounting	for	the	non-	random	sampling	of	the	species	from	which	
the	phylogenies	are	built.	 In	this	study,	we	focus	on	extending	the	
popular	BiSSE	 framework	 to	better	 account	 for	 non-	random	 sam-
pling	of	species.

The	 BiSSE	 framework,	 formulated	 by	Maddison,	Midford,	 and	
Otto	(2007),	has	been	widely	used	to	test	hypotheses	about	state-	
dependent	 diversification.	 The	 framework	 has	 been	 extended	 to	
account	 for	multiple	 states	 (MuSSE:	 FitzJohn,	 2012),	 geographical	
states	 (GeoSSE:	 Goldberg,	 Lancaster,	 &	 Ree,	 2011),	 quantitative	
states	 (QuaSSE:	 FitzJohn,	 2010),	 unmeasured	 states	 that	 are	 cor-
relates	of	 the	observed	states	 (HiSSE:	Beaulieu	&	O’Meara,	2016),	
as	well	as	non-	independence	between	speciation	events	and	state	
changes	 (BiSSE-	ness:	 Magnuson-	Ford	 &	 Otto,	 2012;	 and	 ClaSSE:	
Goldberg	&	Igić,	2012).	However,	all	these	BiSSE-	type	methods	as-
sume	 that	 the	 tips	 of	 the	 phylogenetic	 tree	 are	 either	 completely	
sampled	or	randomly	sampled.	This	assumption	can	limit	the	power	
of	the	BiSSE	framework	because	in	reality	we	almost	never	sample	
tips	completely	or	randomly.

Non-	random	 species	 sampling	 is	 the	 rule	 rather	 than	 the	 ex-
ception	 in	 phylogenetics.	 For	 example	 one	 common	 approach	 to	
building	phylogenies	of	 large	groups	 is	 to	use	 representative	 sam-
pling	in	which	at	least	one	representative	is	sampled	for	each	higher	
taxonomic	 group	 (e.g.	 each	 genus).	 The	 sampling	 of	 discrete	mor-
phological	data	is	also	phylogenetically	overdispersed	(Guillerme	&	
Cooper,	2016).	The	number	of	 species	 sampled	 in	each	group	can	
be determined by a number of factors, including the availability of 
existing	sequence	data	 in	public	databases,	 the	availability	of	pre-
served	tissues	for	sequencing,	and	the	ease	or	difficulty	of	collecting	
new	samples.	The	upshot	is	that	the	species	sampling	in	any	given	
phylogeny	can	be	highly	non-	random.	Failing	to	account	for	this	can	
mislead downstream analyses.

FitzJohn,	Maddison,	and	Otto	(2009)	introduced	the	unresolved	
clade correction to the BiSEE framework to account for non- random 

sampling.	 For	 an	 incompletely	 sampled	 monophyletic	 group,	 this	
correction	 calculates	 the	 probability	 that	 the	 group	 will	 have	 the	
same	number	of	extant	species	in	each	state	as	observed,	regardless	
of	 the	phylogenetic	 relationships	among	 these	extant	 species.	For	
example	in	Figure	1B,	the	unresolved	clade	correction	calculates	the	
probability	that	group	b	has	two	extant	species	in	state	0	and	one	ex-
tant	species	in	state	1,	regardless	of	whether	the	two	species	in	state	
0	are	each	other’s	closet	relative.	The	correction	has	two	limitations:	
first,	 it	 is	not	applicable	to	groups	that	have	more	than	about	200	
species	due	to	its	computational	burden;	second,	if	no	representa-
tive	of	a	group	is	sampled,	the	correction	collapses	the	group	with	its	
sister	group	into	one	unresolved	group,	thus	losing	the	information	
on	one	group	(e.g.	groups	a, b, c, d	in	Figure	2B	are	collapsed	into	one	
unresolved	group).	 In	certain	situations,	 this	can	severely	 limit	 the	
power	of	the	BiSSE	framework.	For	example	if	the	unsampled	group	
originates	near	the	root,	the	correction	will	collapse	the	whole	tree	
into	a	single	group.

In	 this	 study,	 we	 develop	 a	 new	 correction	 that	 does	 not	
have the two limitations of the unresolved clade correction. We 
first	 propose	 a	 correction	 for	 representative	 sampling	 that	 does	
not	 have	 a	 limit	 on	 group	 size.	 This	 correction	 is	mathematically	
equivalent	 to	 an	 approach	 developed	 by	 FitzJohn	 (2012;	 “make.
bisse.uneven” function in r	package	“diversitree”)	that	splits	groups	
with	different	sampling	 fractions	 into	separate	 regions	and	fits	a	
BiSSE	model	to	each	region,	while	constraining	parameters	in	the	
model to be the same across regions. We then modify our correc-
tion	to	allow	for	non-	random	sampling	at	the	group	level,	without	
collapsing	 these	 groups	with	 their	 sister	 groups.	We	use	 simula-
tions	 to	assess	 the	performance	of	our	correction	relative	 to	 the	
unresolved	 clade	 correction,	 as	 well	 as	 the	 performance	 of	 our	
correction for cases where the unresolved clade correction is in-
applicable.	We	did	not	compare	our	correction	to	the	make.bisse.
uneven	 approach	 because	 the	 approach	 assumes	 that	 all	 groups	
have	an	equal	chance	of	being	sampled,	so	 it	cannot	account	 for	
non-	random	sampling	at	the	group	level.	The	“make.bisse.uneven”	
function	also	does	not	accept	groups	with	only	one	representative,	
which	limits	its	application	to	most	of	the	situations	related	to	the	

F IGURE  1 Corrections	for	representative	sampling.	In	panel	(A),	the	tree	has	five	taxonomic	groups	(a–e) and two states (state 0 in 
black	and	state	1	in	white).	Solid	tips	are	representatives	sampled	for	each	taxonomic	group.	In	all	the	groups,	sampling	is	not	complete	and	
dashed	branches	are	not	included	in	the	tree.	In	panel	(B),	the	unresolved	clade	correction	collapses	the	groups	with	incomplete	sampling	
into	unresolved	clade.	Panel	(C)	illustrates	our	correction,	where	groups	with	incomplete	sampling	are	not	collapsed,	but	have	adjusted	
initial values Di

(

0
)

 and Ei(0).	In	group	b,	state	1	is	not	sampled.	This	missing	information	is	corrected	by	listing	all	possible	locations	where	a	
representative	of	state	1,	if	sampled,	would	have	attached	to	group	b. Ei(t)	at	the	root	of	each	group	(marked	with	asterisk)	is	recalculated	to	
reflect	that	all	the	groups	have	representatives	in	the	tree
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cases	we	 are	 interested	 in	 for	 this	 study.	 In	 Table	1,	we	 summa-
rize	major	differences	among	the	unresolved	clade	correction,	the	
make.bisse.uneven correction and our correction.

2  | MATERIAL S AND METHODS

In	the	descriptions	that	follow,	we	assume	that	we	have	constructed	
a	phylogeny	of	 higher	 taxonomic	 groups	 (e.g.	 genera)	 by	 sampling	
zero	or	more	representatives	of	each	higher	group,	where	the	num-
ber	of	samples	 is	unrelated	to	 the	number	of	species	 in	 the	group	
except	by	an	upper	bound.	 In	 this	situation,	some	groups	may	not	
be	represented	 in	 the	phylogeny	 (i.e.	 they	have	zero	samples).	We	
also	assume	that	we	know	the	number	of	species	in	each	group,	and	
can	 therefore	 calculate	 the	 sampling	 fraction	 for	 each	 group.	 The	
two challenges we have to address are: (1) accounting for variation 
in	the	fraction	of	each	higher	group	that	has	been	sampled	(which	
we	refer	to	hereafter	as	the	group-	specific	sampling	fraction);	and	
(2)	accounting	for	unsampled	groups.

2.1 | Correction for group- specific sampling fraction

The	 BiSSE	 framework	 (Maddison	 et	al.,	 2007)	 calculates	 likeli-
hoods	 by	 tracking	 2	 probabilities,	 from	 the	 present	 to	 the	 root,	
for each state i (in this study, we assume two states, i = 0 or 1) 
along	each	branch	in	a	tree:	the	probability	that	a	lineage	in	state	
i at time t would evolve into a clade that has the same number 
of	extant	species	and	the	same	phylogenetic	relationships	among	
these	species	as	observed	in	the	present	(Di(t))	and	the	probability	
that a lineage in i at time t leaves no extant members (Ei(t)). When 
sampling	is	complete,	the	initial	value	Di(0) for each extant lineage 
is 1 if the lineage is in state i and 0 otherwise; the initial value Ei(0) 
for	each	extant	lineage	is	0	as	the	lineage	is	known	to	be	present.	
When	sampling	is	random	and	the	fraction	fi of extant lineages in 
state i	 is	sampled,	the	initial	value	Di(0) for each extant lineage is 
fi if the lineage is in state i and 0 otherwise; the initial value Ei(0) 
for	each	extant	lineage	is	1−f

i
	as	1−f

i
 extant lineages are not sam-

pled,	leaving	the	same	pattern	in	the	tree	as	if	these	lineages	went	
extinct.

F IGURE  2 Corrections	for	unsampled	groups.	In	panel	(A),	there	should	be	5	taxonomic	groups,	in	which	groups	a and b	are	not	sampled	
in	the	tree.	In	panel	(B),	the	unresolved	clade	correction	collapses	groups	a- d	into	one	unresolved	group.	In	panel	(C),	we	know	that	groups	a 
and b	have	split	from	branch	A	at	some	time	points,	so	we	calculate	the	weighted	average	of	Di(t) at the older node of branch A (marked with 
black	circle)	under	all	possible	combinations	of	split	times	of	group	a and b from branch A
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aThe	“make.bisse.uneven”	function	requires	each	group	has	at	least	two	representatives	in	the	tree.
bThe	unresolved	clade	correction	uses	phylogenetic	relationships	of	sampled	groups	only	when	all	
the	groups	in	a	monophyletic	clade	have	representatives	in	the	tree.	Otherwise,	the	correction	will	
collapse	the	clade	into	an	unresolved	clade	and	lose	all	the	information	on	the	phylogenetic	relation-
ships	of	sampled	groups	in	the	clade.

TABLE  1 Comparison	between	the	
existing correction methods and our 
correction
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We	 generalize	 this	 method	 to	 account	 for	 different	 sampling	
fractions	in	different	groups	within	a	single	phylogeny.	In	our	group-	
specific	generalization,	we	first	use	the	above	correction	to	account	
for	random	sampling	within	each	group,	allowing	each	group	to	have	
a	different	sampling	fraction	for	each	state,	fi, and so different initial 
values Di(0) and Ei(0)	(e.g.	the	five	groups	in	Figure	1C).	We	track	Di(t) 
and Ei(t)	along	each	branch	within	each	group	 (branches	 in	bold	 in	
Figure	1C).	 The	 process	 results	 in	Di(t)	 on	 the	 root	 of	 each	 group,	
that	is	the	probability	that	the	root	of	each	group,	if	in	state	i, would 
evolve	into	the	group	we	observe	today.

In	some	cases,	one	state	of	a	group	may	not	have	any	represen-
tative	 in	 the	 tree	 (e.g.	 group	b	 in	Figure	1C).	Using	 the	above	cor-
rection	for	the	group	will	lose	the	information	on	the	total	number	
of	 lineages	with	that	state	 in	the	group,	so	we	need	to	modify	the	
correction	to	account	for	the	unsampled	state.	To	do	this,	we	start	
with	a	 tip	 to	 represent	 the	missing	state	and	attach	 the	 tip	 to	 the	
clade	of	 the	 group,	 as	 if	 the	missing	 state	had	 a	 representative	 in	
the	tree	(Figure	1C).	Because	we	don’t	know	the	location	in	the	tree	
to	which	 this	 tip	 should	 attach,	we	 consider	 all	 possible	 locations	
on	each	branch	of	 the	group	clade	where	 the	 tip	can	be	attached	
(Figure	1C).	Then,	for	each	location,	we	attach	the	tip	and	apply	the	
above correction to calculate Di(t)	for	the	root	of	the	group,	which	
gives	the	probability	that	the	root	of	each	group,	if	in	state	i, would 
evolve	into	the	group,	where	a	random	representative	of	the	missing	
state,	if	sampled,	could	be	attached	to	the	group	clade	at	the	loca-
tion.	The	weighted	average	of	these	Di(t)	values	gives	the	probability	
that	the	root	of	the	group,	if	in	state	i,	would	evolve	into	the	group	in	
the	situation	where	we	have	sampled	a	random	representative	of	the	
missing	state,	but	we	don’t	know	exactly	where	this	representative	is	
attached	to	the	tree.	The	weight	is	

∑

i
Di(t)

2

∑

i
Di(t)

, which is the overall likeli-
hood	formula	given	in	Appendix	1	of	FitzJohn	et	al.	(2009).

Now	we	have	calculated	Di(t)	 for	the	root	of	each	group	 in	the	
tree.	When	 all	 the	 groups	 have	 at	 least	 one	 representative	 in	 the	
tree,	 all	 the	branches	 connecting	 the	 root	of	 these	 groups	 are	 in-
cluded	in	the	tree.	In	other	words,	at	the	group	level,	the	sampling	is	
complete.	So,	to	further	track	Di(t) and Ei(t) along each branch con-
necting	the	root	of	each	group	down	to	the	root	of	the	whole	tree,	
we recalculate Ei(t)	on	the	root	of	each	group	(marked	with	stars	in	
Figure	1C)	as	if	the	sampling	across	the	whole	tree	is	complete.	This	
is done by numerically integrating Ei (t)	from	the	present	time	(t=0)  
to	 the	 root	 age	of	 each	 group	with	 initial	 values	Ei

(

0
)

	 equal	 to	0.	
Similarly,	if	we	can	assume	random	sampling	at	the	group	level,	we	
simply	 integrate	Ei (t) with initial values Ei

(

0
)

	equal	 to	1	minus	the	
sampling	fraction	at	the	group	level.	This	is	equivalent	to	the	“make.
bisse.uneven”	approach	developed	by	FitzJohn	(2012).

2.2 | Correction for unsampled groups

When	there	are	groups	that	have	no	representatives	in	the	tree,	we	
need	to	account	for	these	unsampled	groups	in	our	analyses.	This	is	
possible	as	long	as	we	know	the	topology	that	links	all	the	groups,	in	
other words, we know the internal branch of the tree to which each 
unsampled	group	attaches.	For	example	unsampled	groups	a and b 

in	Figure	2A	attach	to	branch	A	(marked	in	Figure	2C).	Of	course,	we	
don’t	know	exactly	where	along	branch	A	groups	a and b attach, be-
cause	groups	a and b	are	not	included	in	the	tree.	Here	we	propose	a	
correction	for	this	missing	piece	of	information.

The	 correction	 starts	 with	 listing	 all	 possible	 combinations	 of	
time	intervals	that	groups	a and b	can	be	added	to	the	tree.	Then,	
for	 each	 combination	 of	 time	 intervals,	we	 attach	 a	 tip	 branch	 to	
branch A	at	each	of	the	time	intervals	to	represent	a	random	species	
from	each	of	the	unsampled	groups	a and b	(Figure	2C).	Now	that	all	
the	descendant	groups	a, b, c and d from the older node of branch A 
(marked	with	black	circle	in	Figure	2C)	have	at	least	one	representa-
tive	in	the	tree,	we	can	use	our	group-	specific	correction	to	track	the	
Di(t) and Ei(t) till the older node of branch A.	The	weighted	average	of	
these Di(t) values at the older node of branch A	gives	the	probability	
that branch A in state i	would	 evolve	 into	 groups	a, b, c, and d in 
the	situation	where	we	don’t	know	exactly	when	the	groups	a and b 
split	from	branch	A.	The	weight	for	each	split	location	equals	

∑

i
Di(t)

2

∑

i
Di(t)

 
(FitzJohn	et	al.,	2009).

When	 there	 is	 only	 one	 unsampled	 group	 attach	 to	 branch	A, 
we can numerically integrate Di(t) and Ei(t) over the time when the 
unsampled	group	attaches	to	branch	A. But when branch A has more 
than	one	unsampled	descendent	group,	high-	dimensional	 integrals	
need	 to	 be	 calculated,	with	 each	 dimension	 corresponding	 to	 the	
time	when	each	unsampled	group	is	attached	to	branch	A. We are 
not aware of any numerical integration algorithm that converges fast 
enough	to	be	practical	for	parameter	optimization.	So,	instead	of	nu-
merical	integration,	we	discretize	branch	A into many time intervals. 
In this study, we use 1 unit branch length as the length of each time 
interval. But the algorithm would be more efficient if we increased 
time intervals towards the root, because Di(t) and Ei(t) values change 
less over time towards the root.

We	illustrate	our	correction	using	the	simplest	example,	where	
we	know	the	full	topology	that	links	all	the	groups.	In	some	cases,	
we	can	generalize	our	correction	to	account	for	incomplete	knowl-
edge	of	the	topological	relationships	among	groups,	such	as	a	situ-
ation	in	which	we	only	know	that	groups	a, b, c, and d	in	Figure	2C	
form	a	monophyletic	clade,	but	we	do	not	know	the	relationships	
within	 the	 clade.	 In	 this	 case,	 groups	 a and b,	 if	 sampled,	 could	
attach	 independently	 or	 as	 a	monophyletic	 clade	 to	 the	 tree	 on	
any one of three branches: branch A; the branch that leads to 
group	c;	or	the	branch	that	leads	to	group	d. Given that the order 
in which a and b attach to a branch matters if when attach to the 
same	branch,	 this	 gives	 a	 total	 of	15	 topologies	where	groups	a 
and b	could	be	attached	in	this	example.	The	number	of	possible	
locations	 is	 then	the	number	of	possible	combinations	of	branch	
lengths	over	 the	15	topologies,	which	depend	on	the	number	of	
time	 intervals	 in	each	branch.	As	 long	as	the	number	of	possible	
locations	is	not	too	large	to	compute	in	reasonable	time,	the	gen-
eralization	of	our	correction	is	straightforward	by	listing	all	these	
possible	 locations,	 calculating	Di(t) on the root of branch A, and 
averaging these Di(t) weighted by 

∑

i
Di(t)

2

∑

i
Di(t)
.	When	the	number	of	pos-

sible	locations	is	too	large,	we	probably	have	little	knowledge	on	
the	topological	relationships	among	groups.	If	a	missing	group	can	
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be	attached	anywhere	 in	 the	 tree,	our	correction	 for	unsampled	
groups	 is	 equivalent	 to	 assuming	 random	 sampling	 at	 the	 group	
level,	 so	 we	 can	 instead	 use	 our	 group-	specific	 correction	 with	
random	 sampling	 at	 the	 group	 level,	 which	we	 described	 in	 the	
previous	section.

2.3 | Simulations

We	simulated	phylogenies	to	assess	the	performance	of	our	correc-
tion and the unresolved clade correction. Our simulation starts by 
generating	a	BiSSE	tree,	with	the	root	state	fixed	to	0.	The	simulation	
of	each	tree	stops	when	we	reach	500	species.	We	use	this	tree	size	
because it is large enough that the BiSSE framework has relatively 
high	 power	with	 complete	 sampling	 (Davis,	Midford,	&	Maddison,	
2013),	and	small	enough	that	the	unresolved	clade	correction	is	ap-
plicable	for	at	least	half	of	the	simulated	trees.	We	then	identify	each	
monophyletic	clade	as	a	group	using	two	schemes:

1. “State”	 scheme:	 a	 monophyletic	 clade	 is	 a	 group	 if	 all	 of	 its	
extant	 members	 are	 in	 the	 same	 state.	 This	 scheme	 is	 often	
used	 to	 identify	 a	 group	 in	 biogeographical	 studies,	 where	
lineages	 inhabiting	 the	 same	 biogeographical	 area	 tend	 to	 be	
phylogenetically	 clustered	 and	 researchers	 tend	 to	 sample	 rep-
resentatives	from	each	biogeographical	area	within	a	taxonomic	
rank (e.g. Crottini et al., 2012).

2. “Time”	scheme:	a	monophyletic	clade	is	a	group	if	its	most	recent	
common	ancestor	 (MRCA)	existed	 after	half	 of	 the	 total	 evolu-
tionary	time	of	the	tree.	This	scheme	tries	to	simulate	one	aspect	
of how researchers tend to classify lineages into a taxonomic 
rank.

For	each	of	the	“State”	and	“Time”	schemes,	we	include	two	sam-
pling	schemes:

1. “Complete	 group	 sampling”	 scheme:	 all	 the	 taxonomic	 groups	
have	 representatives	 in	 the	 tree,	 so	 sampling	 is	 complete	 at	
the	 group	 level.

2. “Incomplete	group	sampling”	scheme:	all	the	groups	have	a	50%	
chance	of	having	representatives	in	the	tree,	so	the	tree	has	some	
unsampled	groups.

If	a	group	has	no	representatives,	all	its	extant	members	are	pruned	
from	the	tree.	If	a	group	has	representatives,	the	identity	of	its	repre-
sentatives is randomly chosen from its extant members from the tree. 
The	number	of	members	kept	in	the	tree	is	a	random	integer	between	
1	and	5	(or	the	size	of	the	group	if	the	total	number	of	taxa	in	the	group	
is smaller than 5).

We	 categorize	 the	 simulated	 trees	 into	 four	 schemes:	 (1)	 State	
scheme	 with	 Complete	 group	 sampling;	 (2)	 Time	 scheme	 with	
Complete	 group	 sampling;	 (3)	 State	 scheme	with	 Incomplete	 group	
sampling;	 (4)	Time	scheme	with	 Incomplete	group	sampling.	 In	each	
scheme,	we	simulate	trees	under	five	sets	of	parameter	values	for	spe-
ciation	and	extinction	rates	to	reflect	five	possible	ways	that	specia-
tion	and	extinction	rates	can	differ	between	different	states	(Table	2).	
For	each	set,	we	assume	either	equal	state	transition	rates	or	unequal	
state	transition	rates	(Table	2).	We	use	the	same	parameter	values	as	
those	 used	 in	Maddison	 et	al.	 (2007)	 and	 FitzJohn	 et	al.	 (2009)	 for	
comparison,	but	increase	the	ratio	between	parameter	values	of	dif-
ferent	state	to	3.	Under	each	set	of	parameter	values,	we	simulate	200	
trees.	The	five	sets	of	parameter	values	are	used	to	model:

1. Equal	 speciation	 and	 extinction	 rates	 between	 state	 0	 and	
state 1;

2. Faster	diversification	in	state	0	than	state	1	due	to	faster	specia-
tion in state 0;

3. Faster	diversification	in	state	0	than	state	1	due	to	slower	extinc-
tion in state 0;

4. Slower	diversification	in	state	0	than	state	1	due	to	slower	specia-
tion in state 0;

5. Slower diversification in state 0 than state 1 due to faster extinc-
tion in state 0.

For	each	tree	simulated	with	each	set	of	parameter	values	under	
each	simulation	scheme,	we	use	maximum	likelihood	(ML)	to	fit	a	BiSSE	

Parameter sets λ0 λ1 μ0 μ1 q01 q10

Equal	speciation	and	extinction	
rates

0.1 0.1 0.03 0.03 0.01 0.01/0.001

Diversify faster in state 0 due 
to	faster	speciation

0.3 0.1 0.03 0.03 0.01 0.01/0.001

Diversify faster in state 0 due 
to slower extinction

0.1 0.1 0.01 0.03 0.01 0.01/0.001

Diversify slower in state 0 due 
to	slower	speciation

0.03 0.1 0.03 0.03 0.01 0.01/0.001

Diversify slower in state 0 due 
to faster extinction

0.1 0.1 0.09 0.03 0.01 0.01/0.001

Parameters	include	speciation	rate	of	state	0	(λ0),	speciation	rate	of	state	1	(λ1), extinction rate of 
state 0 (μ0), extinction rate of state 1 (μ1), transition rate from state 0 to state 1 (q01) and transition 
rate from state 1 to state 0 (q10).	For	each	parameter	set,	we	assume	either	equal	state	transition	
rates (q10=0.01)	or	unequal	state	transition	rates	(q10=0.001)

TABLE  2 Summary	of	parameter	
values used in the simulation
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model and a constrained BiSSE model (that constrains different states 
to	have	equal	speciation	rates	and	equal	extinction	rates)	to	the	tree,	
using	 both	 the	 unresolved	 clade	 correction	 and	 our	 correction.	 For	
each	correction,	we	compare	 the	ML	estimates	 to	 the	 true	parame-
ter	values.	We	also	compare	the	likelihoods	of	the	best-	fit	model	and	
the	model	used	to	simulate	the	tree.	This	helps	us	assess	whether	bias	
in	the	ML	estimates	reflect	ridges	on	the	likelihood	surface,	such	that	
the true model does not necessarily fit worse than the best- fit model. 
Since	the	ML	estimates	are	likely	to	be	nearby	the	true	parameter	val-
ues, similar likelihoods also suggest that the confidence intervals of the 
ML	estimates	are	likely	to	contain	the	true	parameter	values.	We	also	
estimate	 the	power	of	both	corrections	 to	detect	state-	dependence	
in	speciation	and	extinction	rates,	using	likelihood	ratio	tests	to	com-
pare	the	goodness-	of-	fit	of	the	BiSSE	model	vs.	the	constrained	BiSSE	
model.	This	helps	us	assess	whether	bias	in	the	ML	estimates	causes	
the	true	process	of	state-	dependent	diversification	to	be	rejected.

2.4 | Implementation

We	simulate	BiSSE	trees	and	apply	the	unresolved	clade	correction	
using the r	package	“diversitree”	(FitzJohn,	2012).	We	implement	our	
group-	specific	correction	and	correction	for	unsampled	groups	in	R,	
where Di (t) and Ei (t) are numerically integrated along each branch 
of a tree using the r	package	“desolve”	(Soetaert,	Petzoldt,	&	Setzer,	
2010).	To	find	the	maximum	likelihood	(ML)	estimates,	we	used	the	
“subplex”	method	in	the	r	package	“nloptr”	(Johnson,	2014).	For	both	
the unresolved clade correction and our correction, we started the 
search	from	the	true	parameter	values	and	calculate	the	overall	like-
lihood	using	the	solution	in	Appendix	1	in	FitzJohn	et	al.	(2009).

3  | RESULTS

There	is	a	general	pattern	of	how	non-	random	sampling	affects	pa-
rameter	estimations	of	the	BiSSE	framework,	regardless	of	the	type	
of	 correction	 for	 the	 sampling	 or	 the	 simulation	 scheme	we	 used	
in	 this	 study.	With	 representative	 sampling,	 the	BiSSE	 framework	
tends to underestimate the extinction rate and its estimation of 
speciation	rate	 is	often	biased:	speciation	rate	tends	to	be	overes-
timated using the unresolved clade correction and underestimated 
using	our	correction	(Figure	3;	Figures	S1–S9).	BiSSE	gives	unbiased	
estimates of state transition rates when both states have the same 
speciation	and	extinction	rates	(Figure	3;	Figures	S1–S9).	However,	
when	lineages	in	state	0	diversify	more	rapidly	than	those	in	state	1,	
either	because	they	have	faster	speciation	rates	or	slower	extinction	
rates, BiSSE tends to overestimate the transition rate from state 1 to 
state	0	(Figure	3;	Figure	S1–S9).	In	contrast,	when	lineages	in	state	0	
diversify more slowly than state 1, either because they have slower 
speciation	 rates	 or	 faster	 extinction	 rates,	 BiSSE	 tends	 to	 overes-
timate	the	transition	rate	from	state	0	to	state	1	(Figure	3;	Figures	
S1–S9).

There	are	three	major	differences	in	the	performance	between	
the unresolved clade correction and our correction for non- random 

sampling:	bias,	power,	and	performance.	First,	our	correction	gives	
consistently	 less	 biased	 parameter	 estimates	 than	 the	 unresolved	
clade	correction	for	speciation	rates,	extinction	rates,	and	state	tran-
sition	 rates	 (Figure	3;	 Figures	 S1–S9).	 The	bias	 in	 both	 corrections	
is	a	real	problem,	as	suggested	by	the	large	difference	in	the	likeli-
hoods	of	the	true	model	and	the	best-	fit	model	 (Figures	S10,	S11).	
This	problem	is	more	severe	when	applying	our	correction	to	trees	
simulated	under	“Time”	scheme	and	with	some	groups	not	sampled	
(3rd	and	4th	columns	 in	Figure	S11).	Under	 these	conditions,	con-
fidence intervals of estimates from our correction are less likely to 
contain	the	true	parameter	values	than	the	unresolved	clade	correc-
tion.	Trees	simulated	under	the	“Time”	scheme	have	fewer	but	larger	
groups	(Figure	S12)	and	so	lower	sampling	fractions	(Figure	S13)	for	
both	states	than	trees	simulated	under	“State”	scheme.

Second,	our	correction	has	higher	power	and	a	slightly	elevated	
false	positive	rate	to	detect	state-	dependence	in	speciation	and	ex-
tinction	rates	than	the	unresolved	clade	correction	(Figure	4).	When	
we	 define	 a	 group	 based	 on	 the	 age	 of	 its	MRCA,	 our	 correction	
doubles	 the	 power	 of	 the	 unresolved	 clade	 correction	 (Figure	4).	
Our	 correction	 also	 has	 consistently	 higher	 power	 than	 the	 unre-
solved	clade	correction	when	some	groups	are	not	sampled	 in	the	
tree	(Figure	4).

Third,	not	sampling	all	the	groups	in	the	tree	has	less	effect	on	
the	performance	of	our	correction	than	the	unresolved	clade	correc-
tion.	Sampling	half	of	the	groups	in	the	tree	makes	the	unresolved	
clade	 correction	 inapplicable	 to	 more	 than	 30%	 of	 the	 simulated	
tree,	 whereas	 our	 correction	 estimates	 parameters	 equally	 well	
under	conditions	where	the	unresolved	clade	correction	is	applica-
ble	 (plotted	 in	black	 in	Figure	3	and	Figures	S1–S9)	and	conditions	
where	 the	 unresolved	 clade	 correction	 is	 inapplicable	 (plotted	 in	
white	 in	 Figure	3	 and	 Figures	 S1–S9).	 Sampling	 half	 of	 the	 groups	
also	 reduces	 the	 power	 to	 detect	 state-	dependence	 in	 speciation	
and extinction rates by a larger amount when using the unresolved 
clade	correction	than	when	using	our	correction	(Figure	4).

4  | DISCUSSION

Non-	random	sampling,	such	as	the	representative	sampling	we	dis-
cuss	here,	is	common	practice	in	phylogenetic	studies.	To	minimize	
the	 influence	 of	 non-	random	 sampling	 on	macroevolutionary	 and	
macroecological	inferences,	we	need	to	account	for	it	and	compare	
the	performance	of	different	corrections.	The	BiSSE	framework	rep-
resents	a	large	family	of	phylogenetic	methods.	FitzJohn	et	al.	(2009)	
introduced the unresolved clade correction to the BiSSE framework. 
The	correction	performs	well,	but	 is	not	applicable	 to	phylogenies	
with	large	unresolved	clades	or	with	unsampled	lineages	that	branch	
near	 the	 root	of	 the	 tree.	To	overcome	 these	 limitations,	we	have	
proposed	and	tested	alternative	corrections	in	this	study.

As	with	the	existing	unresolved	clade	correction,	our	correction	
cannot	fully	eliminate	the	influence	of	non-	random	sampling	on	mac-
roevolutionary and macroecological inferences. Both corrections 
tend	to	give	biased	estimates	of	speciation	rates,	underestimates	of	
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extinction rates, and overestimates of the transition rate from the 
state	that	diversifies	more	slowly.	Nevertheless,	our	correction	leads	
to a large reduction in the overestimation of the transition rate. It 
has	 been	 suggested	 that	 even	with	 complete	 sampling,	 the	BiSSE	
framework	 has	 relatively	 low	power	 for	 testing	 hypotheses	 about	

extinction and transition rates (Davis et al., 2013; Gamisch, 2016; 
Maddison	et	al.,	2007).	The	bias	in	both	corrections	is	real	problem,	
suggesting	that	non-	random	sampling	not	only	erases	signals	of	the	
true	evolutionary	process,	but	also	generates	false	signals	that	sup-
port	other	processes.

F IGURE  3 Parameter estimates from the unresolved clade correction and from our correction for trees simulated under the State 
scheme	with	Complete	group	sampling	and	unequal	state	transition	rates.	Panels	from	top	to	bottom	plot	the	estimates	for	speciation	rate,	
extinction	rate,	and	state	transition	rate	under	the	five	parameter	sets	listed	in	Table	2.	For	each	rate	and	under	each	parameter	set,	there	
are	six	point-	and-	whisker	plots.	Each	plot	shows	the	medium	and	the	first	and	third	quantiles	of	the	estimate,	with	asterisk	indicating	the	
true	parameter	value.	The	three	left	plots	are	for	the	rate	of	state	0	(with	the	median	plotted	in	circle)	and	the	three	right	plots	are	for	the	
rate	of	state	1	(with	the	median	plotted	in	triangle).	The	three	plots	summarize	the	distribution	of	estimates	from	the	unresolved	clade	
correction	(leftmost,	coloured	grey),	from	our	correction	for	trees	to	which	the	unresolved	clade	correction	is	applicable	(middle,	coloured	
black)	and	from	our	correction	for	trees	to	which	the	unresolved	clade	correction	is	inapplicable	(rightmost,	coloured	white).	Figure	S1	
summarizes	the	parameter	estimates	under	all	the	four	schemes	with	unequal	state	transition	rates.	Figures	S2–S5	show	the	scatterplots	
of	estimations	for	the	four	schemes	with	unequal	state	transition	rates.	Figures	S6–S9	show	the	scatterplots	of	estimations	for	the	four	
schemes	with	equal	state	transition	rates
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In cases where both corrections could be used (i.e. when the 
total	 number	 of	 species	 in	 an	 unresolved	 clade	 is	 <200),	 the	 best	
method	will	depend	on	 the	aim	of	 the	analysis.	For	example	 if	we	
conduct	BiSSE	analyses	to	estimate	speciation	and	extinction	rates,	

then our correction will return estimates that have means closer 
to	the	true	parameter	values,	but	narrow	confidence	intervals	that	
are less likely to contain the true values than using the unresolved 
clade correction. However, if we conduct BiSSE analyses to test 
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F IGURE  4 Statistical	performance	of	the	unresolved	clade	correction	and	the	correction	in	this	study.	Each	row	of	plots	corresponds	to	
each	of	the	five	parameter	sets	listed	in	Table	2,	with	the	two	columns	of	plots	on	the	left	using	unequal	state	transition	rates	and	the	two	
columns	of	plots	on	the	right	using	equal	state	transition	rates.	Each	column	of	plots	is	under	one	simulation	scheme:	State	scheme	identifies	
a	monophyletic	clade	as	a	group	if	all	of	its	extant	members	are	in	the	same	state;	Time	scheme	with	Complete	group	sampling	identifies	a	
monophyletic	clade	as	a	group	if	its	most	recent	common	ancestor	(MRCA)	existed	after	half	of	the	total	evolutionary	time	of	the	tree.	In	
each	plot,	bars	from	left	to	right	show	the	percentage	of	simulated	trees	that	BiSSE	suggests	state-	dependent	speciation	and	extinction	
rates	when:	all	the	groups	are	sampled	in	the	tree	and	the	unresolved	clade	correction	is	used	(bar	filled	with	solid	grey);	all	the	groups	are	
sampled	in	the	tree	and	our	correction	is	used	(bar	filled	with	solid	black);	not	all	the	groups	are	sampled	in	the	tree	and	the	unresolved	
clade	correction	is	used	(bar	filled	with	grey	lines);	not	all	the	groups	are	sampled	in	the	tree	and	our	correction	is	used	(bar	filled	with	black	
lines).	Under	equal	speciation	and	equal	extinction,	the	percentage	of	simulated	trees	that	BiSSE	suggests	state-	dependent	speciation	and	
extinction	rates	indicates	the	type	I	error	of	the	method,	which	is	expected	to	be	0.05	(the	horizontal	line).	Under	other	parameter	sets,	
the	percentage	of	simulated	trees	that	BiSSE	suggests	state-	dependent	speciation	and	extinction	rates	indicates	the	power	of	the	method,	
which	is	expected	to	be	above	0.8	(the	horizontal	line)
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state-	dependence	in	speciation	and	extinction	rates,	our	correction	
has	higher	power	to	detect	state	dependence	in	speciation	and	ex-
tinction rates than the unresolved clade correction under most sim-
ulation	schemes.	This	is	because	our	correction	is	able	to	use	more	
prior	knowledge	of	the	taxonomy	and	the	topological	relationships	
among	groups	than	the	unresolved	clade	correction.

An	 obvious	 advantage	 of	 our	 correction	 is	 that	 it	 performs	
equally	well	 on	 trees	 to	which	 the	 unresolved	 clade	 correction	 is	
applicable	and	to	which	the	unresolved	clade	correction	is	 inappli-
cable.	A	drawback	of	our	correction	 is	 that	 it	 is	 less	efficient	 than	
the unresolved clade correction when there are a large number of 
unsampled	groups	and/or	unsampled	states	within	each	group,	be-
cause	our	correction	requires	the	listing	of	all	possible	combinations	
of	time	 intervals	when	each	unsampled	group	or	state	 is	added	to	
the	tree.	When	all	the	groups	are	sampled	in	a	tree,	our	correction	
takes	similar	amount	of	time	to	compute	the	overall	likelihood	of	the	
tree	 to	 the	unresolved	 clade	 correction	under	 the	 “State”	 scheme	
(1st	and	2nd	columns	in	Figure	S14),	because	all	extant	members	of	
each	group	have	 the	same	state	under	 the	scheme,	 so	 there	 is	no	
need	to	correct	for	the	unsampled	state	within	each	group.	In	con-
trast,	under	the	“Time”	scheme,	our	correction	takes	10	times	longer	
than	the	unresolved	clade	correction	(1st	and	2nd	columns	in	Figure	
S15).	When	some	groups	are	not	sampled	in	the	tree,	our	correction	
can	take	up	to	100	times	longer	than	the	unresolved	clade	correction	
(3rd	and	4th	columns	in	Figures	S14,	S15).

It	 is	 important	 to	 note	 that	 the	different	 corrections	 are	 not	
mutually	exclusive.	The	unresolved	clade	correction	can	be	com-
bined	with	our	correction	to	minimize	the	limitations	of	both	ap-
proaches.	For	example	we	can	use	our	correction	for	groups	that	
exceed	the	size	limit	of	the	unresolved	clade	correction,	whereas	
using	the	unresolved	clade	correction	for	the	rest	of	the	groups.	
When	 the	unresolved	clade	correction	 is	not	applicable	because	
some	lineages	that	branch	near	the	root	are	not	sampled,	we	can	
use	our	correction	to	integrate	out	the	uncertainties	in	the	place-
ment	of	 these	 lineages.	This	combination	of	 the	 two	corrections	
would both increase the range of situations in which non- random 
sampling	 can	 be	 accounted	 for,	 and	 also	 reduce	 the	 amount	 of	
computing	time	required.

The	BiSSE	framework	opens	up	an	exciting	way	to	study	mac-
roevolutionary	 and	 macroecological	 process.	 Its	 usage	 should	
not	 be	 limited	 by	 how	 we	 currently	 reconstruct	 phylogenies.	
Although	 no	 corrections	 so	 far	 can	 fully	 account	 for	 the	 impact	
of	non-	random	sampling	on	the	BiSSE	framework,	we	show	that	it	
can	still	deliver	meaningful	results	with	the	proper	application	of	
various	corrections	for	non-	random	sampling.	It	 is	worthwhile	to	
note that the BiSSE framework has its own limitations in inferring 
macroevolutionary	and	macroecological	processes,	including	high	
sensitivity	 to	 model	 inadequacy	 and	 phylogenetic	 pseudorepli-
cation	 (Maddison	&	FitzJohn,	2015;	Rabosky	&	Goldberg,	2015).	
These	limitations	cannot	be	overcome	even	if	we	are	able	to	fully	
account	for	the	impact	of	non-	random	sampling.	A	recently	devel-
oped	nonparametric	 test	 “FiSSE”	has	been	suggested	as	a	prom-
ising	complement	to	the	BiSSE	framework	 (Rabosky	&	Goldberg,	

2017), however, the test has not yet been extended to account for 
non-	random	sampling.
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